Spaces:
Sleeping
Sleeping
Update services.py
Browse files- services.py +399 -0
services.py
CHANGED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from PIL import Image, ImageEnhance
|
4 |
+
from io import BytesIO
|
5 |
+
from pdf2image import convert_from_path
|
6 |
+
import json
|
7 |
+
|
8 |
+
from app.gapi_client import get_genai_client
|
9 |
+
from app.utils import extract_json_from_output
|
10 |
+
|
11 |
+
# Global GenAI client
|
12 |
+
CLIENT = None
|
13 |
+
|
14 |
+
def init_genai(api_key: str):
|
15 |
+
"""
|
16 |
+
Initialize the global GenAI client with the provided API key.
|
17 |
+
"""
|
18 |
+
global CLIENT
|
19 |
+
CLIENT = get_genai_client(api_key)
|
20 |
+
|
21 |
+
|
22 |
+
def parse_all_answers(image_input: Image.Image) -> str:
|
23 |
+
"""
|
24 |
+
Extracts answers from a full answer-sheet image using Gemini.
|
25 |
+
Returns the raw JSON string from the model.
|
26 |
+
"""
|
27 |
+
output_format = '''
|
28 |
+
Answer in the following JSON format. Do not write anything else:
|
29 |
+
{
|
30 |
+
"Paper name": {"name": "<paper Alphabet>"},
|
31 |
+
"Answers": {
|
32 |
+
"1": "<option or text>",
|
33 |
+
"2": "<option or text>",
|
34 |
+
"3": "<option or text>",
|
35 |
+
"4": "<option or text>",
|
36 |
+
"5": "<option or text>",
|
37 |
+
"6": "<option or text>",
|
38 |
+
"7": "<option or text>",
|
39 |
+
"8": "<option or text>",
|
40 |
+
"9": "<option or text>",
|
41 |
+
"10": "<option or text>",
|
42 |
+
"11": "<option or text>",
|
43 |
+
"12": "<option or text>",
|
44 |
+
"13": "<option or text>",
|
45 |
+
"14": "<option or text>",
|
46 |
+
"15": "<option or text>",
|
47 |
+
"16": "<option or text>",
|
48 |
+
"17": "<option or text>",
|
49 |
+
"18": "<option or text>",
|
50 |
+
"19": "<option or text>",
|
51 |
+
"20": "<option or text>",
|
52 |
+
"21": "<free text answer>",
|
53 |
+
"22": "<free text answer>",
|
54 |
+
"23": "<free text answer>",
|
55 |
+
"24": "<free text answer>",
|
56 |
+
"25": "<free text answer>"
|
57 |
+
}
|
58 |
+
}
|
59 |
+
'''
|
60 |
+
prompt = f"""
|
61 |
+
You are an assistant that extracts answers from an image.
|
62 |
+
Write only the Alphabet(A,B,C,D,E,F) of the paper in the \"Paper name\" field.
|
63 |
+
The image is a screenshot of an answer sheet containing 25 questions.
|
64 |
+
For questions 1 to 20, the answers are multiple-choice selections.
|
65 |
+
For questions 21 to 25, the answers are free-text responses.
|
66 |
+
Extract the answer for each question (1 to 25) and provide the result in JSON using the format below:
|
67 |
+
{output_format}
|
68 |
+
"""
|
69 |
+
response = CLIENT.models.generate_content(
|
70 |
+
model="gemini-2.0-flash",
|
71 |
+
contents=[prompt, image_input]
|
72 |
+
)
|
73 |
+
return response.text
|
74 |
+
|
75 |
+
|
76 |
+
def preprocess_pdf_last_page(image: Image.Image) -> Image.Image:
|
77 |
+
"""
|
78 |
+
Preprocesses the last page PIL image:
|
79 |
+
- Convert to OpenCV BGR
|
80 |
+
- Mask vertical region
|
81 |
+
- Crop to mask
|
82 |
+
- Unsharp mask sharpen
|
83 |
+
- Enhance with PIL
|
84 |
+
"""
|
85 |
+
# Convert to BGR
|
86 |
+
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
|
87 |
+
h, w = img_cv.shape[:2]
|
88 |
+
|
89 |
+
# Mask
|
90 |
+
mask = np.zeros((h, w), dtype="uint8")
|
91 |
+
top, bottom = int(h * 0.14), int(h * 0.73)
|
92 |
+
cv2.rectangle(mask, (0, top), (w, h - bottom), 255, -1)
|
93 |
+
masked = cv2.bitwise_and(img_cv, img_cv, mask=mask)
|
94 |
+
|
95 |
+
# Crop
|
96 |
+
coords = cv2.findNonZero(mask)
|
97 |
+
x, y, cw, ch = cv2.boundingRect(coords)
|
98 |
+
cropped = masked[y:y+ch, x:x+cw]
|
99 |
+
|
100 |
+
# Sharpen
|
101 |
+
blurred = cv2.GaussianBlur(cropped, (0, 0), sigmaX=3)
|
102 |
+
sharpened = cv2.addWeighted(cropped, 1.5, blurred, -0.5, 0)
|
103 |
+
|
104 |
+
# PIL enhancements
|
105 |
+
pil2 = Image.fromarray(cv2.cvtColor(sharpened, cv2.COLOR_BGR2RGB))
|
106 |
+
pil2 = ImageEnhance.Sharpness(pil2).enhance(1.3)
|
107 |
+
pil2 = ImageEnhance.Contrast(pil2).enhance(1.4)
|
108 |
+
pil2 = ImageEnhance.Brightness(pil2).enhance(1.1)
|
109 |
+
return pil2
|
110 |
+
|
111 |
+
|
112 |
+
def parse_info_with_gemini(pil_img: Image.Image) -> dict:
|
113 |
+
"""
|
114 |
+
Calls Gemini on a header image to extract candidate info fields.
|
115 |
+
"""
|
116 |
+
output_format = '''
|
117 |
+
Answer in the following JSON format. Do not write anything else:
|
118 |
+
{
|
119 |
+
"Candidate Info": {
|
120 |
+
"Paper": "<paper>",
|
121 |
+
"Level": "<level>",
|
122 |
+
"Candidate Name": "<name>",
|
123 |
+
"Candidate Number": "<number>",
|
124 |
+
"School": "<school>",
|
125 |
+
"Country": "<country>",
|
126 |
+
"grade level": "<grade level>",
|
127 |
+
"Date": "<date>"
|
128 |
+
}
|
129 |
+
}
|
130 |
+
'''
|
131 |
+
prompt = f"""
|
132 |
+
You are a helper that accurately reads a sharpened exam header image and extracts exactly these fields:
|
133 |
+
β’ Paper (e.g. \"B\")
|
134 |
+
β’ Level (e.g. \"MIDDLE PRIMARY\")
|
135 |
+
β’ Candidate Name
|
136 |
+
β’ Candidate Number
|
137 |
+
β’ School
|
138 |
+
β’ Country
|
139 |
+
β’ grade level
|
140 |
+
β’ Date (with time)
|
141 |
+
Return **only** valid JSON in this format:
|
142 |
+
{output_format}
|
143 |
+
"""
|
144 |
+
response = CLIENT.models.generate_content(
|
145 |
+
model="gemini-2.0-flash",
|
146 |
+
contents=[prompt, pil_img]
|
147 |
+
)
|
148 |
+
return extract_json_from_output(response.text)
|
149 |
+
|
150 |
+
|
151 |
+
def extract_candidate_data(image: Image.Image) -> dict:
|
152 |
+
"""
|
153 |
+
Preprocess last page and parse candidate info.
|
154 |
+
"""
|
155 |
+
prepped = preprocess_pdf_last_page(image)
|
156 |
+
info = parse_info_with_gemini(prepped)
|
157 |
+
return info
|
158 |
+
|
159 |
+
|
160 |
+
def parse_mcq_answers(pil_image: Image.Image) -> str:
|
161 |
+
"""
|
162 |
+
Extracts MCQ answers 1β10 from an image.
|
163 |
+
"""
|
164 |
+
output_format = '''
|
165 |
+
Answer in the following JSON format. Do not write anything else:
|
166 |
+
{
|
167 |
+
"Answers": {
|
168 |
+
"1": "<option>",
|
169 |
+
"2": "<option>",
|
170 |
+
"3": "<option>",
|
171 |
+
"4": "<option>",
|
172 |
+
"5": "<option>",
|
173 |
+
"6": "<option>",
|
174 |
+
"7": "<option>",
|
175 |
+
"8": "<option>",
|
176 |
+
"9": "<option>",
|
177 |
+
"10": "<option>"
|
178 |
+
}
|
179 |
+
}
|
180 |
+
'''
|
181 |
+
prompt = f"""
|
182 |
+
You are an assistant that extracts MCQ answers from an image.
|
183 |
+
The image is a screenshot of a 10-question multiple-choice answer sheet.
|
184 |
+
Extract which option is marked for each question (1β10) and provide the answers in JSON:
|
185 |
+
{output_format}
|
186 |
+
"""
|
187 |
+
response = CLIENT.models.generate_content(
|
188 |
+
model="gemini-2.0-flash",
|
189 |
+
contents=[prompt, pil_image]
|
190 |
+
)
|
191 |
+
return response.text
|
192 |
+
|
193 |
+
|
194 |
+
def get_mcqs1st(pil_image: Image.Image) -> dict:
|
195 |
+
"""
|
196 |
+
Mask, crop, enhance, and parse MCQs 1β10.
|
197 |
+
"""
|
198 |
+
img_cv = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
199 |
+
h, w = img_cv.shape[:2]
|
200 |
+
mask = np.zeros((h, w), dtype="uint8")
|
201 |
+
top, bot, right = int(h*0.30), int(h*0.44), int(w*0.35)
|
202 |
+
cv2.rectangle(mask, (0, top), (right, h-bot), 255, -1)
|
203 |
+
masked = cv2.bitwise_and(img_cv, img_cv, mask=mask)
|
204 |
+
coords = cv2.findNonZero(mask)
|
205 |
+
x, y, cw, ch = cv2.boundingRect(coords)
|
206 |
+
cropped = masked[y:y+ch, x:x+cw]
|
207 |
+
blur = cv2.GaussianBlur(cropped, (0,0), sigmaX=3)
|
208 |
+
sharp = cv2.addWeighted(cropped, 1.5, blur, -0.5, 0)
|
209 |
+
pil_sh = Image.fromarray(cv2.cvtColor(sharp, cv2.COLOR_BGR2RGB))
|
210 |
+
pil_sh = ImageEnhance.Sharpness(pil_sh).enhance(1.3)
|
211 |
+
pil_sh = ImageEnhance.Contrast(pil_sh).enhance(1.4)
|
212 |
+
final = ImageEnhance.Brightness(pil_sh).enhance(1.1)
|
213 |
+
raw = parse_mcq_answers(final)
|
214 |
+
return extract_json_from_output(raw)
|
215 |
+
|
216 |
+
|
217 |
+
def parse_mcq_answers_11_20(pil_image: Image.Image) -> str:
|
218 |
+
"""
|
219 |
+
Extracts MCQ answers 11β20 from an image.
|
220 |
+
"""
|
221 |
+
output_format = '''
|
222 |
+
Answer in the following JSON format. Do not write anything else:
|
223 |
+
{
|
224 |
+
"Answers": {
|
225 |
+
"11": "<option>",
|
226 |
+
"12": "<option>",
|
227 |
+
"13": "<option>",
|
228 |
+
"14": "<option>",
|
229 |
+
"15": "<option>",
|
230 |
+
"16": "<option>",
|
231 |
+
"17": "<option>",
|
232 |
+
"18": "<option>",
|
233 |
+
"19": "<option>",
|
234 |
+
"20": "<option>"
|
235 |
+
}
|
236 |
+
}
|
237 |
+
'''
|
238 |
+
prompt = f"""
|
239 |
+
You are an assistant that extracts MCQ answers from an image.
|
240 |
+
The image is a screenshot of questions 11β20.
|
241 |
+
Extract the marked option for each and return JSON:
|
242 |
+
{output_format}
|
243 |
+
"""
|
244 |
+
response = CLIENT.models.generate_content(
|
245 |
+
model="gemini-2.0-flash",
|
246 |
+
contents=[prompt, pil_image]
|
247 |
+
)
|
248 |
+
return response.text
|
249 |
+
|
250 |
+
|
251 |
+
def get_mcqs2nd(pil_image: Image.Image) -> dict:
|
252 |
+
"""
|
253 |
+
Mask, crop, enhance, and parse MCQs 11β20.
|
254 |
+
"""
|
255 |
+
img_cv = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
256 |
+
h, w = img_cv.shape[:2]
|
257 |
+
mask = np.zeros((h, w), dtype="uint8")
|
258 |
+
top, bottom, right = int(h*0.56), int(h*0.21), int(w*0.35)
|
259 |
+
cv2.rectangle(mask, (0, top), (right, h-bottom), 255, -1)
|
260 |
+
masked = cv2.bitwise_and(img_cv, img_cv, mask=mask)
|
261 |
+
coords = cv2.findNonZero(mask)
|
262 |
+
x, y, cw, ch = cv2.boundingRect(coords)
|
263 |
+
cropped = masked[y:y+ch, x:x+cw]
|
264 |
+
blurred = cv2.GaussianBlur(cropped, (0,0), sigmaX=3)
|
265 |
+
sharp = cv2.addWeighted(cropped, 1.5, blurred, -0.5, 0)
|
266 |
+
pil_sharp = Image.fromarray(cv2.cvtColor(sharp, cv2.COLOR_BGR2RGB))
|
267 |
+
pil_sharp = ImageEnhance.Sharpness(pil_sharp).enhance(1.3)
|
268 |
+
pil_sharp = ImageEnhance.Contrast(pil_sharp).enhance(1.4)
|
269 |
+
final_pil = ImageEnhance.Brightness(pil_sharp).enhance(1.1)
|
270 |
+
raw = parse_mcq_answers_11_20(final_pil)
|
271 |
+
return extract_json_from_output(raw)
|
272 |
+
|
273 |
+
|
274 |
+
def parse_text_answers(pil_image: Image.Image) -> str:
|
275 |
+
"""
|
276 |
+
Extracts free-text answers 21β25 from an image.
|
277 |
+
"""
|
278 |
+
output_format = '''
|
279 |
+
Answer in the following JSON format. Do not write anything else:
|
280 |
+
{
|
281 |
+
"Answers": {
|
282 |
+
"21": "<text>",
|
283 |
+
"22": "<text>",
|
284 |
+
"23": "<text>",
|
285 |
+
"24": "<text>",
|
286 |
+
"25": "<text>"
|
287 |
+
}
|
288 |
+
}
|
289 |
+
'''
|
290 |
+
prompt = f"""
|
291 |
+
You are an assistant that extracts free-text answers from an image.
|
292 |
+
The image shows answers to questions 21β25.
|
293 |
+
Extract the text for each and return JSON:
|
294 |
+
{output_format}
|
295 |
+
"""
|
296 |
+
response = CLIENT.models.generate_content(
|
297 |
+
model="gemini-2.0-flash",
|
298 |
+
contents=[prompt, pil_image]
|
299 |
+
)
|
300 |
+
return response.text
|
301 |
+
|
302 |
+
|
303 |
+
def get_answer(pil_image: Image.Image) -> dict:
|
304 |
+
"""
|
305 |
+
Mask, crop, enhance, and parse free-text 21β25.
|
306 |
+
"""
|
307 |
+
img_cv = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
308 |
+
h, w = img_cv.shape[:2]
|
309 |
+
mask = np.zeros((h, w), dtype="uint8")
|
310 |
+
top, bottom = int(h*0.31), int(h*0.31)
|
311 |
+
left, right = int(w*0.35), int(w*0.66)
|
312 |
+
cv2.rectangle(mask, (left, top), (right, h-bottom), 255, -1)
|
313 |
+
masked = cv2.bitwise_and(img_cv, img_cv, mask=mask)
|
314 |
+
coords = cv2.findNonZero(mask)
|
315 |
+
x, y, cw, ch = cv2.boundingRect(coords)
|
316 |
+
cropped = masked[y:y+ch, x:x+cw]
|
317 |
+
blurred = cv2.GaussianBlur(cropped, (0,0), sigmaX=3)
|
318 |
+
sharp = cv2.addWeighted(cropped, 1.5, blurred, -0.5, 0)
|
319 |
+
pil_sharp = Image.fromarray(cv2.cvtColor(sharp, cv2.COLOR_BGR2RGB))
|
320 |
+
pil_sharp = ImageEnhance.Sharpness(pil_sharp).enhance(1.3)
|
321 |
+
pil_sharp = ImageEnhance.Contrast(pil_sharp).enhance(1.4)
|
322 |
+
final_pil = ImageEnhance.Brightness(pil_sharp).enhance(1.1)
|
323 |
+
raw = parse_text_answers(final_pil)
|
324 |
+
return extract_json_from_output(raw)
|
325 |
+
|
326 |
+
|
327 |
+
def infer_page(pil_image: Image.Image) -> dict:
|
328 |
+
"""
|
329 |
+
Full pipeline for a single exam page.
|
330 |
+
"""
|
331 |
+
student_info = extract_candidate_data(pil_image)
|
332 |
+
mcq1 = get_mcqs1st(pil_image) or {}
|
333 |
+
mcq2 = get_mcqs2nd(pil_image) or {}
|
334 |
+
free_txt = get_answer(pil_image) or {}
|
335 |
+
all_answers = {**mcq1.get("Answers", {}), **mcq2.get("Answers", {}), **free_txt.get("Answers", {})}
|
336 |
+
return {"Candidate Info": student_info.get("Candidate Info", {}), "Answers": all_answers}
|
337 |
+
|
338 |
+
|
339 |
+
def infer_all_pages(pdf_path: str) -> dict:
|
340 |
+
"""
|
341 |
+
Processes every page in the PDF and infers student data.
|
342 |
+
"""
|
343 |
+
results = {}
|
344 |
+
pages = convert_from_path(pdf_path)
|
345 |
+
for idx, page in enumerate(pages, start=1):
|
346 |
+
data = infer_page(page)
|
347 |
+
info = data.get("Candidate Info", {})
|
348 |
+
key = info.get("Candidate Number") or f"Page_{idx}"
|
349 |
+
if data.get("Answers"):
|
350 |
+
results[key] = data
|
351 |
+
return results
|
352 |
+
|
353 |
+
|
354 |
+
def load_answer_key(pdf_path: str) -> dict:
|
355 |
+
"""
|
356 |
+
Parses the official answer-key PDF into a dict of paper->answers.
|
357 |
+
"""
|
358 |
+
images = convert_from_path(pdf_path)
|
359 |
+
key_dict = {}
|
360 |
+
for page in images:
|
361 |
+
raw = parse_all_answers(page)
|
362 |
+
parsed = extract_json_from_output(raw)
|
363 |
+
name = parsed.get("Paper name", {}).get("name")
|
364 |
+
key_dict[name] = parsed.get("Answers", {})
|
365 |
+
return key_dict
|
366 |
+
|
367 |
+
|
368 |
+
def grade_page(student_page_data: dict, answer_key_dict: dict) -> dict:
|
369 |
+
"""
|
370 |
+
Grades a single student page against the loaded key.
|
371 |
+
"""
|
372 |
+
paper = student_page_data.get("Candidate Info", {}).get("Paper")
|
373 |
+
correct = answer_key_dict.get(paper, {})
|
374 |
+
student_ans = student_page_data.get("Answers", {})
|
375 |
+
total_q = len(correct)
|
376 |
+
correct_count = 0
|
377 |
+
detailed = {}
|
378 |
+
for q, key_ans in correct.items():
|
379 |
+
stud_ans = student_ans.get(q, "")
|
380 |
+
is_corr = str(stud_ans).strip().upper() == str(key_ans).strip().upper()
|
381 |
+
if is_corr:
|
382 |
+
correct_count += 1
|
383 |
+
detailed[q] = {"Correct Answer": key_ans, "Student Answer": stud_ans, "Is Correct": is_corr}
|
384 |
+
percentage = round(correct_count/total_q*100, 2) if total_q else 0.0
|
385 |
+
return {"Candidate Info": student_page_data.get("Candidate Info", {}), "Total Marks": correct_count, "Total Questions": total_q, "Percentage": percentage, "Detailed Results": detailed}
|
386 |
+
|
387 |
+
|
388 |
+
def grade_all_students(answer_key_pdf: str, student_pdf: str, out_json: str = "results.json") -> dict:
|
389 |
+
"""
|
390 |
+
Loads key, infers all students, grades them, and writes JSON.
|
391 |
+
"""
|
392 |
+
key_dict = load_answer_key(answer_key_pdf)
|
393 |
+
students = infer_all_pages(student_pdf)
|
394 |
+
results = {}
|
395 |
+
for cand, data in students.items():
|
396 |
+
results[cand] = grade_page(data, key_dict)
|
397 |
+
with open(out_json, "w") as f:
|
398 |
+
json.dump(results, f, indent=2)
|
399 |
+
return results
|