Spaces:
Sleeping
Sleeping
File size: 1,645 Bytes
05847c9 2cc093f 180efbc 05847c9 2cc093f 05847c9 2cc093f 05847c9 2cc093f 05847c9 2cc093f 180efbc 2cc093f 05847c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import streamlit as st
import requests
import json
st.title("PDF Extraction App")
st.write("Upload a PDF file to extract correct answers and options using the backend service.")
# File uploader widget for PDF files
uploaded_file = st.file_uploader("Choose a PDF file", type=["pdf"])
if uploaded_file is not None:
if st.button("Extract Answers"):
with st.spinner("Processing the file, please wait..."):
try:
# Prepare the file payload
files = {
"file": (uploaded_file.name, uploaded_file.read(), "application/pdf")
}
# Make a POST request to the FastAPI endpoint
response = requests.post(
"https://hammad712-grading.hf.space/extract-answers/",
files=files
)
# Check for successful response
if response.status_code == 200:
result = response.json()
st.success("Extraction successful!")
st.json(result)
# Create a download button for the JSON result
json_data = json.dumps(result, indent=2)
st.download_button(
label="Download JSON",
data=json_data,
file_name="extraction_result.json",
mime="application/json"
)
else:
st.error(f"Error: {response.text}")
except Exception as e:
st.error(f"An error occurred: {e}")
|