File size: 11,240 Bytes
84f2275 7f269b9 84f2275 7f269b9 84f2275 7f269b9 84f2275 b8bfa11 84f2275 b8bfa11 84f2275 b8bfa11 84f2275 7fa9057 84f2275 7fa9057 84f2275 7f269b9 84f2275 7fa9057 84f2275 7fa9057 84f2275 7fa9057 84f2275 7fa9057 84f2275 7f269b9 7fa9057 84f2275 7fa9057 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
from fastapi import FastAPI, UploadFile, File, HTTPException, Query
from fastapi.responses import JSONResponse, StreamingResponse
import uvicorn
import io
import json
import numpy as np
import cv2
from PIL import Image
from pdf2image import convert_from_bytes
# Import the Google GenAI client libraries.
from google import genai
from google.genai import types
# Initialize the GenAI client with your API key.
client = genai.Client(api_key="AIzaSyDDDHg9GWl6-9aq9Wo43GHfk2wcakhgwBQ")
app = FastAPI(title="Student Result Card API")
# -----------------------------
# Preprocessing Methods
# -----------------------------
def preprocess_candidate_info(image_cv):
"""
Preprocess the image to extract the candidate information region.
Region is defined by a mask covering the top-left portion.
"""
height, width = image_cv.shape[:2]
mask = np.zeros((height, width), dtype="uint8")
margin_top = int(height * 0.10)
margin_bottom = int(height * 0.25)
cv2.rectangle(mask, (0, margin_top), (width, height - margin_bottom), 255, -1)
masked = cv2.bitwise_and(image_cv, image_cv, mask=mask)
coords = cv2.findNonZero(mask)
x, y, w, h = cv2.boundingRect(coords)
cropped = masked[y:y+h, x:x+w]
return Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
def preprocess_mcq(image_cv):
"""
Preprocess the image to extract the MCQ answers region (questions 1 to 10).
Region is defined by a mask on the left side of the page.
"""
height, width = image_cv.shape[:2]
mask = np.zeros((height, width), dtype="uint8")
margin_top = int(height * 0.27)
margin_bottom = int(height * 0.23)
right_boundary = int(width * 0.35)
cv2.rectangle(mask, (0, margin_top), (right_boundary, height - margin_bottom), 255, -1)
masked = cv2.bitwise_and(image_cv, image_cv, mask=mask)
coords = cv2.findNonZero(mask)
x, y, w, h = cv2.boundingRect(coords)
cropped = masked[y:y+h, x:x+w]
return Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
def preprocess_free_response(image_cv):
"""
Preprocess the image to extract the free-response answers region (questions 11 to 15).
Region is defined by a mask on the middle-right part of the page.
"""
height, width = image_cv.shape[:2]
mask = np.zeros((height, width), dtype="uint8")
margin_top = int(height * 0.27)
margin_bottom = int(height * 0.38)
left_boundary = int(width * 0.35)
right_boundary = int(width * 0.68)
cv2.rectangle(mask, (left_boundary, margin_top), (right_boundary, height - margin_bottom), 255, -1)
masked = cv2.bitwise_and(image_cv, image_cv, mask=mask)
coords = cv2.findNonZero(mask)
x, y, w, h = cv2.boundingRect(coords)
cropped = masked[y:y+h, x:x+w]
return Image.fromarray(cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB))
def preprocess_full_answers(image_cv):
"""
For extracting the correct answer key, we assume the entire page contains the answers.
"""
return Image.fromarray(cv2.cvtColor(image_cv, cv2.COLOR_BGR2RGB))
# -----------------------------
# Extraction Methods using Gemini
# -----------------------------
def extract_json_from_output(output_str):
"""
Extracts a JSON object from a string containing extra text.
"""
start = output_str.find('{')
end = output_str.rfind('}')
if start == -1 or end == -1:
return None
json_str = output_str[start:end+1]
try:
return json.loads(json_str)
except json.JSONDecodeError:
return None
def get_student_info(image_input):
"""
Extracts candidate information from an image.
"""
output_format = """
Answer in the following JSON format. Do not write anything else:
{
"Candidate Info": {
"Name": "<name>",
"Number": "<number>",
"Country": "<country>",
"Level": "<level>"
}
}
"""
prompt = f"""
You are an assistant that extracts candidate information from an image.
The image contains details including name, candidate number, country, and level.
Extract the information accurately and provide the result in JSON using the format below:
{output_format}
"""
response = client.models.generate_content(model="gemini-2.0-flash", contents=[prompt, image_input])
return extract_json_from_output(response.text)
def get_mcq_answers(image_input):
"""
Extracts multiple-choice answers (questions 1 to 10) from an image.
"""
output_format = """
Answer in the following JSON format do not write anything else:
{
"Answers": {
"1": "<option>",
"2": "<option>",
"3": "<option>",
"4": "<option>",
"5": "<option>",
"6": "<option>",
"7": "<option>",
"8": "<option>",
"9": "<option>",
"10": "<option>"
}
}
"""
prompt = f"""
You are an assistant that extracts MCQ answers from an image.
The image is a screenshot of a 10-question multiple-choice answer sheet.
Extract which option is marked for each question (1 to 10) and provide the answers in JSON using the format below:
{output_format}
"""
response = client.models.generate_content(model="gemini-2.0-flash", contents=[prompt, image_input])
return extract_json_from_output(response.text)
def get_free_response_answers(image_input):
"""
Extracts free-text answers (questions 11 to 15) from an image.
"""
output_format = """
Answer in the following JSON format. Do not write anything else:
{
"Free Answers": {
"11": "<answer for question 11>",
"12": "<answer for question 12>",
"13": "<answer for question 13>",
"14": "<answer for question 14>",
"15": "<answer for question 15>"
}
}
"""
prompt = f"""
You are an assistant that extracts free-text answers from an image.
The image contains responses for questions 11 to 15.
Extract the answers accurately and provide the result in JSON using the format below:
{output_format}
"""
response = client.models.generate_content(model="gemini-2.0-flash", contents=[prompt, image_input])
return extract_json_from_output(response.text)
def get_all_answers(image_input):
"""
Extracts all answers (questions 1 to 15) from an image of the correct answer key.
"""
output_format = """
Answer in the following JSON format. Do not write anything else:
{
"Answers": {
"1": "<option or text>",
"2": "<option or text>",
"3": "<option or text>",
"4": "<option or text>",
"5": "<option or text>",
"6": "<option or text>",
"7": "<option or text>",
"8": "<option or text>",
"9": "<option or text>",
"10": "<option or text>",
"11": "<free-text answer>",
"12": "<free-text answer>",
"13": "<free-text answer>",
"14": "<free-text answer>",
"15": "<free-text answer>"
}
}
"""
prompt = f"""
You are an assistant that extracts answers from an image.
The image is a screenshot of an answer sheet containing 15 questions.
For questions 1 to 10, the answers are multiple-choice selections.
For questions 11 to 15, the answers are free-text responses.
Extract the answer for each question and provide the result in JSON using the format below:
{output_format}
"""
response = client.models.generate_content(model="gemini-2.0-flash", contents=[prompt, image_input])
return extract_json_from_output(response.text)
# -----------------------------
# Method to calculate result card
# -----------------------------
def calculate_result(student_info, student_mcq, student_free, correct_answers):
"""
Compares student's answers with the correct answers, calculates marks and percentage,
and returns a result card in JSON.
"""
student_all = {}
if student_mcq and "Answers" in student_mcq:
student_all.update(student_mcq["Answers"])
if student_free and "Free Answers" in student_free:
student_all.update(student_free["Free Answers"])
correct_all = correct_answers.get("Answers", {})
total_questions = 15
marks = 0
detailed = {}
for q in map(str, range(1, total_questions + 1)):
student_ans = student_all.get(q, "").strip()
correct_ans = correct_all.get(q, "").strip()
if student_ans == correct_ans:
marks += 1
detailed[q] = {"Student": student_ans, "Correct": correct_ans, "Result": "Correct"}
else:
detailed[q] = {"Student": student_ans, "Correct": correct_ans, "Result": "Incorrect"}
percentage = (marks / total_questions) * 100
result_card = {
"Candidate Info": student_info.get("Candidate Info", {}),
"Total Marks": marks,
"Total Questions": total_questions,
"Percentage": percentage,
"Detailed Results": detailed
}
return result_card
# -----------------------------
# API Endpoint to process PDFs and return student result cards
# -----------------------------
@app.post("/process")
async def process_pdfs(
student_pdf: UploadFile = File(...),
answer_key_pdf: UploadFile = File(...),
download: bool = Query(False, description="Set to true to download result card list as a JSON file")
):
try:
# Read student PDF bytes and convert to images
student_bytes = await student_pdf.read()
student_images = convert_from_bytes(student_bytes)
# Read answer key PDF bytes and convert to images; assume correct key is in the last page.
answer_key_bytes = await answer_key_pdf.read()
answer_key_images = convert_from_bytes(answer_key_bytes)
last_page = answer_key_images[-1]
last_page_cv = np.array(last_page)
last_page_cv = cv2.cvtColor(last_page_cv, cv2.COLOR_RGB2BGR)
correct_image = preprocess_full_answers(last_page_cv)
correct_answers = get_all_answers(correct_image)
student_result_cards = []
# Process each student page.
for idx, page in enumerate(student_images):
page_cv = np.array(page)
page_cv = cv2.cvtColor(page_cv, cv2.COLOR_RGB2BGR)
student_info_image = preprocess_candidate_info(page_cv)
mcq_image = preprocess_mcq(page_cv)
free_image = preprocess_free_response(page_cv)
student_info = get_student_info(student_info_image)
student_mcq = get_mcq_answers(mcq_image)
student_free = get_free_response_answers(free_image)
result_card = calculate_result(student_info, student_mcq, student_free, correct_answers)
result_card["Student Index"] = idx + 1
student_result_cards.append(result_card)
if download:
# Create downloadable JSON file
json_bytes = json.dumps({"result_cards": student_result_cards}, indent=2).encode("utf-8")
return StreamingResponse(
io.BytesIO(json_bytes),
media_type="application/json",
headers={"Content-Disposition": "attachment; filename=result_cards.json"}
)
else:
return JSONResponse(content={"result_cards": student_result_cards})
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run("main:app", host="0.0.0.0", port=8000, reload=True)
|