|
import json |
|
from langchain.document_loaders import PyPDFLoader |
|
from models import ExtractionResult, EvaluationResult |
|
from llm import get_llm |
|
|
|
llm = get_llm() |
|
|
|
def extract_answers_from_pdf(pdf_path: str) -> ExtractionResult: |
|
""" |
|
Loads a PDF, extracts its content, and uses the LLM to output a JSON of the answers. |
|
""" |
|
loader = PyPDFLoader(pdf_path) |
|
pages = loader.load_and_split() |
|
all_page_content = "\n".join(page.page_content for page in pages) |
|
|
|
|
|
extraction_schema = ExtractionResult.model_json_schema() |
|
system_message = ( |
|
"You are a document analysis tool that extracts the options and correct answers from the provided document content. " |
|
"The output must be a JSON object that strictly follows the schema: " + json.dumps(extraction_schema, indent=2) |
|
) |
|
user_message = ( |
|
"Please extract the correct answers and options (A, B, C, D, E) from the following document content:\n\n" |
|
+ all_page_content |
|
) |
|
prompt = system_message + "\n\n" + user_message |
|
|
|
response = llm.invoke(prompt, response_format={"type": "json_object"}) |
|
result = ExtractionResult.model_validate_json(response.content) |
|
return result |
|
|
|
def evaluate_student(answer_key: ExtractionResult, student: ExtractionResult) -> EvaluationResult: |
|
""" |
|
Compares the answer key with a student's answers and returns the evaluation result. |
|
""" |
|
evaluation_schema = EvaluationResult.model_json_schema() |
|
system_message = ( |
|
"You are an academic evaluation tool that compares the answer key with a student's answers. " |
|
"Calculate the total marks, grade, and percentage based on the provided JSON objects. " |
|
"The output must be a JSON object that strictly follows the schema: " + json.dumps(evaluation_schema, indent=2) |
|
) |
|
user_message = ( |
|
"Answer Key JSON:\n" + json.dumps(answer_key.model_dump(), indent=2) + "\n\n" |
|
"Student Answer JSON:\n" + json.dumps(student.model_dump(), indent=2) |
|
) |
|
prompt = system_message + "\n\n" + user_message |
|
|
|
response = llm.invoke(prompt, response_format={"type": "json_object"}) |
|
evaluation_result = EvaluationResult.model_validate_json(response.content) |
|
return evaluation_result |
|
|