Update main.py
Browse files
main.py
CHANGED
@@ -6,18 +6,18 @@ from pydantic import BaseModel
|
|
6 |
from langchain_groq import ChatGroq
|
7 |
from langchain.document_loaders import PyPDFLoader
|
8 |
|
9 |
-
#
|
10 |
API_KEY = os.getenv("GROQ_API_KEY")
|
11 |
if not API_KEY:
|
12 |
raise ValueError("GROQ_API_KEY environment variable not set.")
|
13 |
|
14 |
app = FastAPI(title="PDF Question Extractor", version="1.0")
|
15 |
|
16 |
-
#
|
17 |
class ExtractionResult(BaseModel):
|
18 |
answers: List[str]
|
19 |
|
20 |
-
# Initialize LLM
|
21 |
def get_llm():
|
22 |
return ChatGroq(
|
23 |
model="llama-3.3-70b-versatile",
|
@@ -28,6 +28,15 @@ def get_llm():
|
|
28 |
|
29 |
llm = get_llm()
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
@app.post("/extract-answers/")
|
32 |
async def extract_answers(file: UploadFile = File(...)):
|
33 |
try:
|
@@ -36,37 +45,34 @@ async def extract_answers(file: UploadFile = File(...)):
|
|
36 |
with open(file_path, "wb") as buffer:
|
37 |
buffer.write(file.file.read())
|
38 |
|
39 |
-
# Load and
|
40 |
loader = PyPDFLoader(file_path)
|
41 |
pages = loader.load_and_split()
|
42 |
all_page_content = "\n".join(page.page_content for page in pages)
|
43 |
|
44 |
-
# JSON schema
|
45 |
schema_dict = ExtractionResult.model_json_schema()
|
46 |
schema = json.dumps(schema_dict, indent=2)
|
47 |
|
48 |
-
#
|
49 |
system_message = (
|
50 |
-
"You are a document analysis tool that extracts the options and correct answers
|
51 |
-
"The output must be a JSON object that strictly follows the schema: "
|
|
|
52 |
)
|
53 |
-
|
54 |
-
# User message
|
55 |
user_message = (
|
56 |
"Please extract the correct answers and options (A, B, C, D, E) from the following document content:\n\n"
|
57 |
+ all_page_content
|
58 |
)
|
59 |
-
|
60 |
-
# Construct final prompt
|
61 |
prompt = system_message + "\n\n" + user_message
|
62 |
|
63 |
-
#
|
64 |
response = llm.invoke(prompt, response_format={"type": "json_object"})
|
65 |
|
66 |
-
#
|
67 |
result = ExtractionResult.model_validate_json(response.content)
|
68 |
|
69 |
-
# Cleanup
|
70 |
os.remove(file_path)
|
71 |
|
72 |
return result.model_dump()
|
|
|
6 |
from langchain_groq import ChatGroq
|
7 |
from langchain.document_loaders import PyPDFLoader
|
8 |
|
9 |
+
# Securely load your Groq API key from environment variables
|
10 |
API_KEY = os.getenv("GROQ_API_KEY")
|
11 |
if not API_KEY:
|
12 |
raise ValueError("GROQ_API_KEY environment variable not set.")
|
13 |
|
14 |
app = FastAPI(title="PDF Question Extractor", version="1.0")
|
15 |
|
16 |
+
# Define the expected JSON response schema
|
17 |
class ExtractionResult(BaseModel):
|
18 |
answers: List[str]
|
19 |
|
20 |
+
# Initialize the language model (LLM)
|
21 |
def get_llm():
|
22 |
return ChatGroq(
|
23 |
model="llama-3.3-70b-versatile",
|
|
|
28 |
|
29 |
llm = get_llm()
|
30 |
|
31 |
+
# Root endpoint: Provides a welcome message and instructions
|
32 |
+
@app.get("/")
|
33 |
+
async def root():
|
34 |
+
return {
|
35 |
+
"message": "Welcome to the PDF Question Extractor API.",
|
36 |
+
"usage": "POST your PDF to /extract-answers/ to extract answers."
|
37 |
+
}
|
38 |
+
|
39 |
+
# PDF extraction endpoint: Processes a PDF file upload
|
40 |
@app.post("/extract-answers/")
|
41 |
async def extract_answers(file: UploadFile = File(...)):
|
42 |
try:
|
|
|
45 |
with open(file_path, "wb") as buffer:
|
46 |
buffer.write(file.file.read())
|
47 |
|
48 |
+
# Load and split the PDF into pages
|
49 |
loader = PyPDFLoader(file_path)
|
50 |
pages = loader.load_and_split()
|
51 |
all_page_content = "\n".join(page.page_content for page in pages)
|
52 |
|
53 |
+
# Generate the JSON schema from the Pydantic model
|
54 |
schema_dict = ExtractionResult.model_json_schema()
|
55 |
schema = json.dumps(schema_dict, indent=2)
|
56 |
|
57 |
+
# Build the prompt with system and user messages
|
58 |
system_message = (
|
59 |
+
"You are a document analysis tool that extracts the options and correct answers "
|
60 |
+
"from the provided document content. The output must be a JSON object that strictly follows the schema: "
|
61 |
+
+ schema
|
62 |
)
|
|
|
|
|
63 |
user_message = (
|
64 |
"Please extract the correct answers and options (A, B, C, D, E) from the following document content:\n\n"
|
65 |
+ all_page_content
|
66 |
)
|
|
|
|
|
67 |
prompt = system_message + "\n\n" + user_message
|
68 |
|
69 |
+
# Invoke the LLM and request a JSON response
|
70 |
response = llm.invoke(prompt, response_format={"type": "json_object"})
|
71 |
|
72 |
+
# Validate and parse the JSON response using Pydantic
|
73 |
result = ExtractionResult.model_validate_json(response.content)
|
74 |
|
75 |
+
# Cleanup the temporary file
|
76 |
os.remove(file_path)
|
77 |
|
78 |
return result.model_dump()
|