Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,127 +1,178 @@
|
|
1 |
import streamlit as st
|
2 |
-
from fastai.vision import open_image, load_learner
|
3 |
-
import PIL.Image
|
4 |
from PIL import Image
|
5 |
-
from io import BytesIO
|
6 |
import requests
|
|
|
|
|
7 |
import torch
|
8 |
import torch.nn as nn
|
9 |
-
import
|
10 |
-
|
11 |
-
|
|
|
12 |
|
13 |
-
# Define the FeatureLoss class
|
14 |
class FeatureLoss(nn.Module):
|
15 |
def __init__(self, m_feat, layer_ids, layer_wgts):
|
16 |
super().__init__()
|
17 |
self.m_feat = m_feat
|
18 |
self.loss_features = [self.m_feat[i] for i in layer_ids]
|
19 |
-
self.hooks =
|
20 |
self.wgts = layer_wgts
|
21 |
-
self.metric_names = ['pixel'
|
22 |
|
23 |
-
def
|
24 |
-
self.
|
25 |
-
return [(o.clone() if clone else o) for o in self.hooks.stored]
|
26 |
|
27 |
def forward(self, input, target):
|
28 |
-
|
29 |
-
|
30 |
-
self.
|
31 |
-
|
32 |
-
self.feat_losses
|
|
|
|
|
33 |
self.metrics = dict(zip(self.metric_names, self.feat_losses))
|
34 |
return sum(self.feat_losses)
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
|
46 |
def tensor_to_pil(tensor):
|
47 |
-
"""
|
48 |
-
Convert a tensor to a PIL Image.
|
49 |
-
"""
|
50 |
tensor = tensor.cpu().clamp(0, 1)
|
51 |
array = tensor.numpy().transpose(1, 2, 0)
|
52 |
return Image.fromarray((array * 255).astype('uint8'))
|
53 |
|
54 |
-
def
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# Streamlit application
|
78 |
-
st.
|
79 |
-
st.write("Convert any image to its sketch version using a Pix2Pix GAN Model.")
|
80 |
-
|
81 |
-
# Download the model file from the Hugging Face repository
|
82 |
-
model_url = "https://huggingface.co/Hammad712/image2sketch/resolve/main/image2sketch.pkl"
|
83 |
-
model_file_path = 'image2sketch.pkl'
|
84 |
|
85 |
-
|
86 |
-
with st.spinner('Downloading model...'):
|
87 |
-
response = requests.get(model_url)
|
88 |
-
with open(model_file_path, 'wb') as f:
|
89 |
-
f.write(response.content)
|
90 |
-
st.success('Model downloaded successfully!')
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
shutil.move(model_file_path, os.path.join(tmpdirname, 'export.pkl'))
|
95 |
-
learn = load_learner(tmpdirname)
|
96 |
|
97 |
-
#
|
98 |
-
|
99 |
-
|
100 |
-
st.session_state['generated_images'] = []
|
101 |
|
102 |
-
|
103 |
-
st.
|
|
|
104 |
|
105 |
# Input for image URL or path
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
# Run inference button
|
109 |
if st.button("Convert"):
|
110 |
if image_path_or_url:
|
111 |
with st.spinner('Processing...'):
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
else:
|
127 |
st.error("Please enter a valid image path or URL.")
|
|
|
1 |
import streamlit as st
|
2 |
+
from fastai.vision import open_image, load_learner
|
|
|
3 |
from PIL import Image
|
|
|
4 |
import requests
|
5 |
+
import os
|
6 |
+
import logging
|
7 |
import torch
|
8 |
import torch.nn as nn
|
9 |
+
from io import BytesIO
|
10 |
+
|
11 |
+
# Setup logging
|
12 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
|
|
|
14 |
class FeatureLoss(nn.Module):
|
15 |
def __init__(self, m_feat, layer_ids, layer_wgts):
|
16 |
super().__init__()
|
17 |
self.m_feat = m_feat
|
18 |
self.loss_features = [self.m_feat[i] for i in layer_ids]
|
19 |
+
self.hooks = [module.register_forward_hook(self.hook_fn) for module in self.loss_features]
|
20 |
self.wgts = layer_wgts
|
21 |
+
self.metric_names = ['pixel'] + [f'feat_{i}' for i in range(len(layer_ids))] + [f'gram_{i}' for i in range(len(layer_ids))]
|
22 |
|
23 |
+
def hook_fn(self, module, input, output):
|
24 |
+
self.stored = output.detach().clone()
|
|
|
25 |
|
26 |
def forward(self, input, target):
|
27 |
+
self.m_feat(target)
|
28 |
+
out_feat = [self.stored.clone()]
|
29 |
+
self.m_feat(input)
|
30 |
+
in_feat = [self.stored]
|
31 |
+
self.feat_losses = [torch.nn.functional.mse_loss(input, target)]
|
32 |
+
self.feat_losses += [torch.nn.functional.mse_loss(f_in, f_out) * w for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
|
33 |
+
self.feat_losses += [torch.nn.functional.mse_loss(self.gram_matrix(f_in), self.gram_matrix(f_out)) * w**2 * 5e3 for f_in, f_out, w in zip(in_feat, out_feat, self.wgts)]
|
34 |
self.metrics = dict(zip(self.metric_names, self.feat_losses))
|
35 |
return sum(self.feat_losses)
|
36 |
|
37 |
+
@staticmethod
|
38 |
+
def gram_matrix(input):
|
39 |
+
b, c, h, w = input.size()
|
40 |
+
features = input.view(b, c, h * w)
|
41 |
+
G = torch.bmm(features, features.transpose(1, 2))
|
42 |
+
return G.div(c * h * w)
|
43 |
+
|
44 |
+
def fetch_image(image_path_or_url):
|
45 |
+
if isinstance(image_path_or_url, str) and image_path_or_url.startswith(('http://', 'https://')):
|
46 |
+
response = requests.get(image_path_or_url)
|
47 |
+
img = Image.open(BytesIO(response.content)).convert("RGB")
|
48 |
+
else:
|
49 |
+
img = Image.open(image_path_or_url).convert("RGB")
|
50 |
+
return img
|
51 |
|
52 |
+
def inference(image_path_or_url, learn):
|
53 |
+
img = fetch_image(image_path_or_url)
|
54 |
+
img_with_margin = Image.new('RGB', (img.width + 500, img.height + 500), (255, 255, 255))
|
55 |
+
img_with_margin.paste(img, (250, 250))
|
56 |
+
temp_image_path = "temp_image.jpg"
|
57 |
+
img_with_margin.save(temp_image_path, quality=95)
|
58 |
+
img_fastai = open_image(temp_image_path)
|
59 |
+
_, img_hr, _ = learn.predict(img_fastai)
|
60 |
+
return tensor_to_pil(img_hr)
|
61 |
|
62 |
def tensor_to_pil(tensor):
|
|
|
|
|
|
|
63 |
tensor = tensor.cpu().clamp(0, 1)
|
64 |
array = tensor.numpy().transpose(1, 2, 0)
|
65 |
return Image.fromarray((array * 255).astype('uint8'))
|
66 |
|
67 |
+
def load_model(model_url, model_file_path):
|
68 |
+
if not os.path.exists(model_file_path):
|
69 |
+
with st.spinner('Downloading model...'):
|
70 |
+
response = requests.get(model_url)
|
71 |
+
with open(model_file_path, 'wb') as f:
|
72 |
+
f.write(response.content)
|
73 |
+
st.success('Model downloaded successfully!')
|
74 |
+
learn = load_learner(os.path.dirname(model_file_path), model_file_path)
|
75 |
+
return learn
|
76 |
+
|
77 |
+
# Custom CSS
|
78 |
+
def set_css(style):
|
79 |
+
st.markdown(f"<style>{style}</style>", unsafe_allow_html=True)
|
80 |
+
|
81 |
+
# Combined dark mode styles
|
82 |
+
combined_css = """
|
83 |
+
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
|
84 |
+
.block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); }
|
85 |
+
.stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; }
|
86 |
+
.stSpinner { color: #4CAF50; }
|
87 |
+
.title {
|
88 |
+
font-size: 3rem;
|
89 |
+
font-weight: bold;
|
90 |
+
display: flex;
|
91 |
+
align-items: center;
|
92 |
+
justify-content: center;
|
93 |
+
}
|
94 |
+
.colorful-text {
|
95 |
+
background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b);
|
96 |
+
-webkit-background-clip: text;
|
97 |
+
-webkit-text-fill-color: transparent;
|
98 |
+
}
|
99 |
+
.black-white-text {
|
100 |
+
color: black;
|
101 |
+
}
|
102 |
+
.small-input .stTextInput>div>input {
|
103 |
+
height: 2rem;
|
104 |
+
font-size: 0.9rem;
|
105 |
+
}
|
106 |
+
.small-file-uploader .stFileUploader>div>div {
|
107 |
+
height: 2rem;
|
108 |
+
font-size: 0.9rem;
|
109 |
+
}
|
110 |
+
.custom-text {
|
111 |
+
font-size: 1.2rem;
|
112 |
+
color: #feb47b;
|
113 |
+
text-align: center;
|
114 |
+
margin-top: -20px;
|
115 |
+
margin-bottom: 20px;
|
116 |
+
}
|
117 |
+
"""
|
118 |
|
119 |
# Streamlit application
|
120 |
+
st.set_page_config(layout="wide")
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
st.markdown('<div class="title"><span class="colorful-text">Image</span> <span class="black-white-text">to Sketch</span></div>', unsafe_allow_html=True)
|
125 |
+
st.markdown('<div class="custom-text">Jana\'s embroidery studio. Convert Photo\'s to Drawings using AI</div>', unsafe_allow_html=True)
|
|
|
|
|
126 |
|
127 |
+
# Download and load the model
|
128 |
+
MODEL_URL = "https://huggingface.co/Hammad712/image2sketch/resolve/main/image2sketch.pkl"
|
129 |
+
MODEL_FILE_PATH = 'image2sketch.pkl'
|
|
|
130 |
|
131 |
+
if 'learn' not in st.session_state:
|
132 |
+
st.session_state['learn'] = load_model(MODEL_URL, MODEL_FILE_PATH)
|
133 |
+
learn = st.session_state['learn']
|
134 |
|
135 |
# Input for image URL or path
|
136 |
+
with st.expander("Input Options", expanded=True):
|
137 |
+
image_path_or_url = st.text_input("Enter image URL", "", key="image_url", placeholder="Enter image URL", help="Enter the URL of the image to convert")
|
138 |
+
uploaded_file = st.file_uploader("Or upload an image", type=["jpg", "jpeg", "png", "webp"], key="upload_file", help="Upload an image file to convert")
|
139 |
+
|
140 |
+
if uploaded_file is not None:
|
141 |
+
image_path_or_url = uploaded_file
|
142 |
|
143 |
# Run inference button
|
144 |
if st.button("Convert"):
|
145 |
if image_path_or_url:
|
146 |
with st.spinner('Processing...'):
|
147 |
+
try:
|
148 |
+
high_res_image = inference(image_path_or_url, learn)
|
149 |
+
original_image = fetch_image(image_path_or_url)
|
150 |
+
|
151 |
+
# Display original and high-res images side by side
|
152 |
+
st.markdown("### Result")
|
153 |
+
col1, col2 = st.columns(2)
|
154 |
+
|
155 |
+
with col1:
|
156 |
+
st.image(original_image, caption='Original Image', use_column_width=True)
|
157 |
+
with col2:
|
158 |
+
st.image(high_res_image, caption='Sketch Image', use_column_width=True)
|
159 |
+
|
160 |
+
# Provide a download button for the generated image
|
161 |
+
img_byte_arr = BytesIO()
|
162 |
+
high_res_image.save(img_byte_arr, format='JPEG')
|
163 |
+
img_byte_arr = img_byte_arr.getvalue()
|
164 |
+
|
165 |
+
st.download_button(
|
166 |
+
label="Download Sketch Image",
|
167 |
+
data=img_byte_arr,
|
168 |
+
file_name="sketch_image.jpg",
|
169 |
+
mime="image/jpeg"
|
170 |
+
)
|
171 |
+
|
172 |
+
st.success("Image processed successfully!")
|
173 |
+
|
174 |
+
except Exception as e:
|
175 |
+
st.error(f"An error occurred: {e}")
|
176 |
+
logging.error("Error during inference", exc_info=True)
|
177 |
else:
|
178 |
st.error("Please enter a valid image path or URL.")
|