File size: 10,226 Bytes
1dbeaf5
94ba3d3
46a11a0
 
 
94ba3d3
1d61cef
94ba3d3
46a11a0
94ba3d3
 
1dbeaf5
94ba3d3
 
 
 
 
 
 
 
 
 
46a11a0
1dbeaf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d61cef
94ba3d3
1d61cef
 
1dbeaf5
ef20d33
1d61cef
94ba3d3
1dbeaf5
94ba3d3
 
1d61cef
1dbeaf5
1d61cef
 
ef20d33
1d61cef
 
ef20d33
1d61cef
 
1dbeaf5
1d61cef
 
 
 
 
ef20d33
1dbeaf5
46a11a0
1d61cef
46a11a0
 
1d61cef
46a11a0
1dbeaf5
46a11a0
1d61cef
46a11a0
1d61cef
 
 
 
 
 
46a11a0
1d61cef
 
46a11a0
1d61cef
 
46a11a0
 
1d61cef
46a11a0
1d61cef
 
 
1dbeaf5
46a11a0
 
 
1d61cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dbeaf5
1d61cef
 
1dbeaf5
1d61cef
 
 
 
 
1dbeaf5
1d61cef
 
 
 
 
 
 
94ba3d3
 
 
 
 
 
 
 
1d61cef
1dbeaf5
1d61cef
 
 
 
94ba3d3
1dbeaf5
1d61cef
1dbeaf5
1d61cef
 
 
1dbeaf5
1d61cef
 
 
 
 
 
1dbeaf5
1d61cef
94ba3d3
1d61cef
 
 
 
94ba3d3
1d61cef
94ba3d3
1dbeaf5
 
 
 
 
 
 
 
 
1d61cef
 
 
94ba3d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dbeaf5
94ba3d3
1dbeaf5
94ba3d3
46a11a0
94ba3d3
 
 
 
 
1dbeaf5
 
94ba3d3
 
1dbeaf5
 
 
 
94ba3d3
 
 
 
 
 
 
 
 
 
1dbeaf5
94ba3d3
 
 
1d61cef
1dbeaf5
94ba3d3
1d61cef
94ba3d3
 
 
 
 
 
 
 
1d61cef
46a11a0
1dbeaf5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
from fastapi import FastAPI, HTTPException, UploadFile, File
from pydantic import BaseModel
import torch
import librosa
import numpy as np
import os
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import tempfile
import shutil
from dotenv import load_dotenv
import uvicorn
import scipy.spatial.distance as distance

# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

app = FastAPI(title="Quran Recitation Comparer API")

class ComparisonResult(BaseModel):
    similarity_score: float
    interpretation: str

# Custom implementation of DTW to replace librosa.sequence.dtw
def custom_dtw(X, Y, metric='euclidean'):
    """
    Custom Dynamic Time Warping implementation.
    
    Args:
        X: First sequence
        Y: Second sequence
        metric: Distance metric ('euclidean' or 'cosine')
        
    Returns:
        D: Cost matrix
        wp: Warping path
    """
    # Get sequence lengths
    n, m = len(X), len(Y)
    
    # Initialize cost matrix
    D = np.zeros((n + 1, m + 1))
    D[0, 1:] = np.inf
    D[1:, 0] = np.inf
    D[0, 0] = 0
    
    # Fill cost matrix
    for i in range(1, n + 1):
        for j in range(1, m + 1):
            if metric == 'euclidean':
                cost = np.sum((X[i-1] - Y[j-1])**2)
            elif metric == 'cosine':
                cost = 1 - np.dot(X[i-1], Y[j-1]) / (np.linalg.norm(X[i-1]) * np.linalg.norm(Y[j-1]))
            D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1])
    
    # Backtracking
    wp = [(n, m)]
    i, j = n, m
    while i > 0 or j > 0:
        if i == 0:
            j -= 1
        elif j == 0:
            i -= 1
        else:
            min_idx = np.argmin([D[i-1, j-1], D[i-1, j], D[i, j-1]])
            if min_idx == 0:
                i -= 1
                j -= 1
            elif min_idx == 1:
                i -= 1
            else:
                j -= 1
        wp.append((i, j))
    
    wp.reverse()
    return D, wp

class QuranRecitationComparer:
    def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=None):
        """Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        print(f"Using device: {self.device}")

        # Load model and processor once during initialization
        if token:
            print(f"Loading model {model_name} with token...")
            self.processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token)
            self.model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token)
        else:
            print(f"Loading model {model_name} without token...")
            self.processor = Wav2Vec2Processor.from_pretrained(model_name)
            self.model = Wav2Vec2ForCTC.from_pretrained(model_name)

        self.model = self.model.to(self.device)
        self.model.eval()

        # Cache for embeddings to avoid recomputation
        self.embedding_cache = {}
        print("Model loaded successfully!")

    def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
        """Load and preprocess an audio file."""
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"Audio file not found: {file_path}")

        print(f"Loading audio: {file_path}")
        y, sr = librosa.load(file_path, sr=target_sr)

        if normalize:
            y = librosa.util.normalize(y)

        if trim_silence:
            # Use librosa.effects.trim which should be available in most versions
            y, _ = librosa.effects.trim(y, top_db=30)

        return y

    def get_deep_embedding(self, audio, sr=16000):
        """Extract frame-wise deep embeddings using the pretrained model."""
        input_values = self.processor(
            audio,
            sampling_rate=sr,
            return_tensors="pt"
        ).input_values.to(self.device)

        with torch.no_grad():
            outputs = self.model(input_values, output_hidden_states=True)

        hidden_states = outputs.hidden_states[-1]
        embedding_seq = hidden_states.squeeze(0).cpu().numpy()

        return embedding_seq

    def compute_dtw_distance(self, features1, features2):
        """Compute the DTW distance between two sequences of features."""
        D, wp = custom_dtw(X=features1, Y=features2, metric='euclidean')
        distance = D[-1, -1]
        normalized_distance = distance / len(wp)
        return normalized_distance

    def interpret_similarity(self, norm_distance):
        """Interpret the normalized distance value."""
        if norm_distance == 0:
            result = "The recitations are identical based on the deep embeddings."
            score = 100
        elif norm_distance < 1:
            result = "The recitations are extremely similar."
            score = 95
        elif norm_distance < 5:
            result = "The recitations are very similar with minor differences."
            score = 80
        elif norm_distance < 10:
            result = "The recitations show moderate similarity."
            score = 60
        elif norm_distance < 20:
            result = "The recitations show some noticeable differences."
            score = 40
        else:
            result = "The recitations are quite different."
            score = max(0, 100 - norm_distance)

        return result, score

    def get_embedding_for_file(self, file_path):
        """Get embedding for a file, using cache if available."""
        if file_path in self.embedding_cache:
            print(f"Using cached embedding for {file_path}")
            return self.embedding_cache[file_path]

        print(f"Computing new embedding for {file_path}")
        audio = self.load_audio(file_path)
        embedding = self.get_deep_embedding(audio)

        # Store in cache for future use
        self.embedding_cache[file_path] = embedding
        print(f"Embedding shape: {embedding.shape}")

        return embedding

    def predict(self, file_path1, file_path2):
        """
        Predict the similarity between two audio files.
        This method can be called repeatedly without reloading the model.

        Args:
            file_path1 (str): Path to first audio file
            file_path2 (str): Path to second audio file

        Returns:
            float: Similarity score
            str: Interpretation of similarity
        """
        print(f"Comparing {file_path1} and {file_path2}")
        # Get embeddings (using cache if available)
        embedding1 = self.get_embedding_for_file(file_path1)
        embedding2 = self.get_embedding_for_file(file_path2)

        # Compute DTW distance
        print("Computing DTW distance...")
        norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
        print(f"Normalized distance: {norm_distance}")

        # Interpret results
        interpretation, similarity_score = self.interpret_similarity(norm_distance)
        print(f"Similarity score: {similarity_score}, Interpretation: {interpretation}")

        return similarity_score, interpretation

    def clear_cache(self):
        """Clear the embedding cache to free memory."""
        self.embedding_cache = {}
        print("Embedding cache cleared")

# Global variable for the comparer instance
comparer = None

@app.on_event("startup")
async def startup_event():
    """Initialize the model when the application starts."""
    global comparer
    print("Initializing model... This may take a moment.")
    try:
        comparer = QuranRecitationComparer(
            model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
            token=HF_TOKEN
        )
        print("Model initialized and ready for predictions!")
    except Exception as e:
        print(f"Error initializing model: {str(e)}")
        raise

@app.get("/")
async def root():
    """Root endpoint to check if the API is running."""
    return {"message": "Quran Recitation Comparer API is running", "status": "active"}

@app.post("/compare", response_model=ComparisonResult)
async def compare_files(
    file1: UploadFile = File(...),
    file2: UploadFile = File(...)
):
    """
    Compare two audio files and return similarity metrics.
    
    - **file1**: First audio file (MP3, WAV, etc.)
    - **file2**: Second audio file (MP3, WAV, etc.)
    
    Returns similarity score and interpretation.
    """
    if not comparer:
        raise HTTPException(status_code=500, detail="Model not initialized. Please try again later.")
    
    print(f"Received files: {file1.filename} and {file2.filename}")
    temp_dir = tempfile.mkdtemp()
    print(f"Created temporary directory: {temp_dir}")
    
    try:
        # Save uploaded files to temporary directory
        temp_file1 = os.path.join(temp_dir, file1.filename)
        temp_file2 = os.path.join(temp_dir, file2.filename)
        
        with open(temp_file1, "wb") as f:
            content = await file1.read()
            f.write(content)
            
        with open(temp_file2, "wb") as f:
            content = await file2.read()
            f.write(content)
        
        print(f"Files saved to: {temp_file1} and {temp_file2}")
            
        # Compare the files
        similarity_score, interpretation = comparer.predict(temp_file1, temp_file2)
        
        return ComparisonResult(
            similarity_score=similarity_score,
            interpretation=interpretation
        )
    
    except Exception as e:
        print(f"Error processing files: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}")
    
    finally:
        # Clean up temporary files
        print(f"Cleaning up temporary directory: {temp_dir}")
        shutil.rmtree(temp_dir, ignore_errors=True)

@app.post("/clear-cache")
async def clear_cache():
    """Clear the embedding cache to free memory."""
    if not comparer:
        raise HTTPException(status_code=500, detail="Model not initialized.")
    
    comparer.clear_cache()
    return {"message": "Embedding cache cleared successfully"}

if __name__ == "__main__":
    uvicorn.run("main:app", host="0.0.0.0", port=7860, log_level="info")