Spaces:
Running
Running
File size: 10,226 Bytes
1dbeaf5 94ba3d3 46a11a0 94ba3d3 1d61cef 94ba3d3 46a11a0 94ba3d3 1dbeaf5 94ba3d3 46a11a0 1dbeaf5 1d61cef 94ba3d3 1d61cef 1dbeaf5 ef20d33 1d61cef 94ba3d3 1dbeaf5 94ba3d3 1d61cef 1dbeaf5 1d61cef ef20d33 1d61cef ef20d33 1d61cef 1dbeaf5 1d61cef ef20d33 1dbeaf5 46a11a0 1d61cef 46a11a0 1d61cef 46a11a0 1dbeaf5 46a11a0 1d61cef 46a11a0 1d61cef 46a11a0 1d61cef 46a11a0 1d61cef 46a11a0 1d61cef 46a11a0 1d61cef 1dbeaf5 46a11a0 1d61cef 1dbeaf5 1d61cef 1dbeaf5 1d61cef 1dbeaf5 1d61cef 94ba3d3 1d61cef 1dbeaf5 1d61cef 94ba3d3 1dbeaf5 1d61cef 1dbeaf5 1d61cef 1dbeaf5 1d61cef 1dbeaf5 1d61cef 94ba3d3 1d61cef 94ba3d3 1d61cef 94ba3d3 1dbeaf5 1d61cef 94ba3d3 1dbeaf5 94ba3d3 1dbeaf5 94ba3d3 46a11a0 94ba3d3 1dbeaf5 94ba3d3 1dbeaf5 94ba3d3 1dbeaf5 94ba3d3 1d61cef 1dbeaf5 94ba3d3 1d61cef 94ba3d3 1d61cef 46a11a0 1dbeaf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
from fastapi import FastAPI, HTTPException, UploadFile, File
from pydantic import BaseModel
import torch
import librosa
import numpy as np
import os
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import tempfile
import shutil
from dotenv import load_dotenv
import uvicorn
import scipy.spatial.distance as distance
# Load environment variables
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
app = FastAPI(title="Quran Recitation Comparer API")
class ComparisonResult(BaseModel):
similarity_score: float
interpretation: str
# Custom implementation of DTW to replace librosa.sequence.dtw
def custom_dtw(X, Y, metric='euclidean'):
"""
Custom Dynamic Time Warping implementation.
Args:
X: First sequence
Y: Second sequence
metric: Distance metric ('euclidean' or 'cosine')
Returns:
D: Cost matrix
wp: Warping path
"""
# Get sequence lengths
n, m = len(X), len(Y)
# Initialize cost matrix
D = np.zeros((n + 1, m + 1))
D[0, 1:] = np.inf
D[1:, 0] = np.inf
D[0, 0] = 0
# Fill cost matrix
for i in range(1, n + 1):
for j in range(1, m + 1):
if metric == 'euclidean':
cost = np.sum((X[i-1] - Y[j-1])**2)
elif metric == 'cosine':
cost = 1 - np.dot(X[i-1], Y[j-1]) / (np.linalg.norm(X[i-1]) * np.linalg.norm(Y[j-1]))
D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1])
# Backtracking
wp = [(n, m)]
i, j = n, m
while i > 0 or j > 0:
if i == 0:
j -= 1
elif j == 0:
i -= 1
else:
min_idx = np.argmin([D[i-1, j-1], D[i-1, j], D[i, j-1]])
if min_idx == 0:
i -= 1
j -= 1
elif min_idx == 1:
i -= 1
else:
j -= 1
wp.append((i, j))
wp.reverse()
return D, wp
class QuranRecitationComparer:
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=None):
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
# Load model and processor once during initialization
if token:
print(f"Loading model {model_name} with token...")
self.processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token)
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token)
else:
print(f"Loading model {model_name} without token...")
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
self.model = self.model.to(self.device)
self.model.eval()
# Cache for embeddings to avoid recomputation
self.embedding_cache = {}
print("Model loaded successfully!")
def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
"""Load and preprocess an audio file."""
if not os.path.exists(file_path):
raise FileNotFoundError(f"Audio file not found: {file_path}")
print(f"Loading audio: {file_path}")
y, sr = librosa.load(file_path, sr=target_sr)
if normalize:
y = librosa.util.normalize(y)
if trim_silence:
# Use librosa.effects.trim which should be available in most versions
y, _ = librosa.effects.trim(y, top_db=30)
return y
def get_deep_embedding(self, audio, sr=16000):
"""Extract frame-wise deep embeddings using the pretrained model."""
input_values = self.processor(
audio,
sampling_rate=sr,
return_tensors="pt"
).input_values.to(self.device)
with torch.no_grad():
outputs = self.model(input_values, output_hidden_states=True)
hidden_states = outputs.hidden_states[-1]
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
return embedding_seq
def compute_dtw_distance(self, features1, features2):
"""Compute the DTW distance between two sequences of features."""
D, wp = custom_dtw(X=features1, Y=features2, metric='euclidean')
distance = D[-1, -1]
normalized_distance = distance / len(wp)
return normalized_distance
def interpret_similarity(self, norm_distance):
"""Interpret the normalized distance value."""
if norm_distance == 0:
result = "The recitations are identical based on the deep embeddings."
score = 100
elif norm_distance < 1:
result = "The recitations are extremely similar."
score = 95
elif norm_distance < 5:
result = "The recitations are very similar with minor differences."
score = 80
elif norm_distance < 10:
result = "The recitations show moderate similarity."
score = 60
elif norm_distance < 20:
result = "The recitations show some noticeable differences."
score = 40
else:
result = "The recitations are quite different."
score = max(0, 100 - norm_distance)
return result, score
def get_embedding_for_file(self, file_path):
"""Get embedding for a file, using cache if available."""
if file_path in self.embedding_cache:
print(f"Using cached embedding for {file_path}")
return self.embedding_cache[file_path]
print(f"Computing new embedding for {file_path}")
audio = self.load_audio(file_path)
embedding = self.get_deep_embedding(audio)
# Store in cache for future use
self.embedding_cache[file_path] = embedding
print(f"Embedding shape: {embedding.shape}")
return embedding
def predict(self, file_path1, file_path2):
"""
Predict the similarity between two audio files.
This method can be called repeatedly without reloading the model.
Args:
file_path1 (str): Path to first audio file
file_path2 (str): Path to second audio file
Returns:
float: Similarity score
str: Interpretation of similarity
"""
print(f"Comparing {file_path1} and {file_path2}")
# Get embeddings (using cache if available)
embedding1 = self.get_embedding_for_file(file_path1)
embedding2 = self.get_embedding_for_file(file_path2)
# Compute DTW distance
print("Computing DTW distance...")
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
print(f"Normalized distance: {norm_distance}")
# Interpret results
interpretation, similarity_score = self.interpret_similarity(norm_distance)
print(f"Similarity score: {similarity_score}, Interpretation: {interpretation}")
return similarity_score, interpretation
def clear_cache(self):
"""Clear the embedding cache to free memory."""
self.embedding_cache = {}
print("Embedding cache cleared")
# Global variable for the comparer instance
comparer = None
@app.on_event("startup")
async def startup_event():
"""Initialize the model when the application starts."""
global comparer
print("Initializing model... This may take a moment.")
try:
comparer = QuranRecitationComparer(
model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
token=HF_TOKEN
)
print("Model initialized and ready for predictions!")
except Exception as e:
print(f"Error initializing model: {str(e)}")
raise
@app.get("/")
async def root():
"""Root endpoint to check if the API is running."""
return {"message": "Quran Recitation Comparer API is running", "status": "active"}
@app.post("/compare", response_model=ComparisonResult)
async def compare_files(
file1: UploadFile = File(...),
file2: UploadFile = File(...)
):
"""
Compare two audio files and return similarity metrics.
- **file1**: First audio file (MP3, WAV, etc.)
- **file2**: Second audio file (MP3, WAV, etc.)
Returns similarity score and interpretation.
"""
if not comparer:
raise HTTPException(status_code=500, detail="Model not initialized. Please try again later.")
print(f"Received files: {file1.filename} and {file2.filename}")
temp_dir = tempfile.mkdtemp()
print(f"Created temporary directory: {temp_dir}")
try:
# Save uploaded files to temporary directory
temp_file1 = os.path.join(temp_dir, file1.filename)
temp_file2 = os.path.join(temp_dir, file2.filename)
with open(temp_file1, "wb") as f:
content = await file1.read()
f.write(content)
with open(temp_file2, "wb") as f:
content = await file2.read()
f.write(content)
print(f"Files saved to: {temp_file1} and {temp_file2}")
# Compare the files
similarity_score, interpretation = comparer.predict(temp_file1, temp_file2)
return ComparisonResult(
similarity_score=similarity_score,
interpretation=interpretation
)
except Exception as e:
print(f"Error processing files: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}")
finally:
# Clean up temporary files
print(f"Cleaning up temporary directory: {temp_dir}")
shutil.rmtree(temp_dir, ignore_errors=True)
@app.post("/clear-cache")
async def clear_cache():
"""Clear the embedding cache to free memory."""
if not comparer:
raise HTTPException(status_code=500, detail="Model not initialized.")
comparer.clear_cache()
return {"message": "Embedding cache cleared successfully"}
if __name__ == "__main__":
uvicorn.run("main:app", host="0.0.0.0", port=7860, log_level="info") |