File size: 7,946 Bytes
46a11a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os
import torch
import librosa
import numpy as np
from typing import List, Dict, Any, Optional
from fastapi import FastAPI, UploadFile, File, HTTPException, BackgroundTasks
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from librosa.sequence import dtw
import tempfile
import uuid
import shutil

# Initialize FastAPI app
app = FastAPI(
    title="Quran Recitation Comparison API",
    description="API for comparing similarity between Quran recitations using Wav2Vec2 embeddings",
    version="1.0.0"
)

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Allows all origins
    allow_credentials=True,
    allow_methods=["*"],  # Allows all methods
    allow_headers=["*"],  # Allows all headers
)

# Global variables
MODEL = None
PROCESSOR = None
UPLOAD_DIR = os.path.join(tempfile.gettempdir(), "quran_comparison_uploads")

# Ensure upload directory exists
os.makedirs(UPLOAD_DIR, exist_ok=True)

# Response models
class SimilarityResponse(BaseModel):
    similarity_score: float
    interpretation: str

class ErrorResponse(BaseModel):
    error: str

# Initialize model from environment variable
def initialize_model():
    global MODEL, PROCESSOR
    
    # Get HF token from environment variable
    hf_token = os.environ.get("HF_TOKEN", None)
    model_name = os.environ.get("MODEL_NAME", "jonatasgrosman/wav2vec2-large-xlsr-53-arabic")
    
    try:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        print(f"Loading model on device: {device}")
        
        # Load model and processor
        if hf_token:
            PROCESSOR = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=hf_token)
            MODEL = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=hf_token)
        else:
            PROCESSOR = Wav2Vec2Processor.from_pretrained(model_name)
            MODEL = Wav2Vec2ForCTC.from_pretrained(model_name)
        
        MODEL = MODEL.to(device)
        MODEL.eval()
        print("Model loaded successfully")
    except Exception as e:
        print(f"Error loading model: {e}")
        raise e

# Load audio file
def load_audio(file_path, target_sr=16000, trim_silence=True, normalize=True):
    """Load and preprocess an audio file."""
    try:
        y, sr = librosa.load(file_path, sr=target_sr)
        
        if normalize:
            y = librosa.util.normalize(y)
        
        if trim_silence:
            y, _ = librosa.effects.trim(y, top_db=30)
        
        return y
    except Exception as e:
        raise HTTPException(status_code=400, detail=f"Error loading audio: {e}")

# Get deep embedding
def get_deep_embedding(audio, sr=16000):
    """Extract frame-wise deep embeddings using the pretrained model."""
    global MODEL, PROCESSOR
    
    if MODEL is None or PROCESSOR is None:
        raise HTTPException(status_code=500, detail="Model not initialized")
    
    try:
        device = next(MODEL.parameters()).device
        input_values = PROCESSOR(
            audio, 
            sampling_rate=sr, 
            return_tensors="pt"
        ).input_values.to(device)
        
        with torch.no_grad():
            outputs = MODEL(input_values, output_hidden_states=True)
        
        hidden_states = outputs.hidden_states[-1]
        embedding_seq = hidden_states.squeeze(0).cpu().numpy()
        
        return embedding_seq
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error extracting embeddings: {e}")

# Compute DTW distance
def compute_dtw_distance(features1, features2):
    """Compute the DTW distance between two sequences of features."""
    try:
        D, wp = dtw(X=features1, Y=features2, metric='euclidean')
        distance = D[-1, -1]
        normalized_distance = distance / len(wp)
        return normalized_distance
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error computing DTW distance: {e}")

# Interpret similarity
def interpret_similarity(norm_distance):
    """Interpret the normalized distance value."""
    if norm_distance == 0:
        result = "The recitations are identical based on the deep embeddings."
        score = 100
    elif norm_distance < 1:
        result = "The recitations are extremely similar."
        score = 95
    elif norm_distance < 5:
        result = "The recitations are very similar with minor differences."
        score = 80
    elif norm_distance < 10:
        result = "The recitations show moderate similarity."
        score = 60
    elif norm_distance < 20:
        result = "The recitations show some noticeable differences."
        score = 40
    else:
        result = "The recitations are quite different."
        score = max(0, 100 - norm_distance)
        
    return result, score

# Clean up temporary files
def cleanup_temp_files(file_paths):
    """Remove temporary files."""
    for file_path in file_paths:
        if os.path.exists(file_path):
            try:
                os.remove(file_path)
            except Exception as e:
                print(f"Error removing temporary file {file_path}: {e}")

# API endpoints
@app.post("/compare", response_model=SimilarityResponse)
async def compare_recitations(
    background_tasks: BackgroundTasks,
    file1: UploadFile = File(...), 
    file2: UploadFile = File(...)
):
    """
    Compare two Quran recitations and return similarity metrics.
    
    - **file1**: First audio file
    - **file2**: Second audio file
    
    Returns:
    - **similarity_score**: Score between 0-100 indicating similarity
    - **interpretation**: Text interpretation of the similarity
    """
    # Check if model is initialized
    if MODEL is None or PROCESSOR is None:
        raise HTTPException(status_code=500, detail="Model not initialized")
    
    # Temporary file paths
    temp_file1 = os.path.join(UPLOAD_DIR, f"{uuid.uuid4()}.wav")
    temp_file2 = os.path.join(UPLOAD_DIR, f"{uuid.uuid4()}.wav")
    
    try:
        # Save uploaded files
        with open(temp_file1, "wb") as f:
            shutil.copyfileobj(file1.file, f)
        
        with open(temp_file2, "wb") as f:
            shutil.copyfileobj(file2.file, f)
        
        # Load audio files
        audio1 = load_audio(temp_file1)
        audio2 = load_audio(temp_file2)
        
        # Extract embeddings
        embedding1 = get_deep_embedding(audio1)
        embedding2 = get_deep_embedding(audio2)
        
        # Compute DTW distance
        norm_distance = compute_dtw_distance(embedding1.T, embedding2.T)
        
        # Interpret results
        interpretation, similarity_score = interpret_similarity(norm_distance)
        
        # Add cleanup task
        background_tasks.add_task(cleanup_temp_files, [temp_file1, temp_file2])
        
        return {
            "similarity_score": similarity_score,
            "interpretation": interpretation
        }
    
    except Exception as e:
        # Ensure files are cleaned up even in case of error
        background_tasks.add_task(cleanup_temp_files, [temp_file1, temp_file2])
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    """Health check endpoint."""
    if MODEL is None or PROCESSOR is None:
        return JSONResponse(
            status_code=503,
            content={"status": "error", "message": "Model not initialized"}
        )
    return {"status": "ok", "model_loaded": True}

# Initialize model on startup
@app.on_event("startup")
async def startup_event():
    initialize_model()

# Run the FastAPI app
if __name__ == "__main__":
    import uvicorn
    port = int(os.environ.get("PORT", 7860))  # Default to port 7860 for Hugging Face Spaces
    uvicorn.run("main:app", host="0.0.0.0", port=port, reload=False)