Spaces:
Sleeping
Sleeping
from fastapi import FastAPI, HTTPException, UploadFile, File, Form | |
from pydantic import BaseModel | |
from typing import Optional | |
import torch | |
import librosa | |
import numpy as np | |
import os | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
from librosa.sequence import dtw | |
import tempfile | |
import shutil | |
from dotenv import load_dotenv | |
import uvicorn | |
# Load environment variables | |
load_dotenv() | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
app = FastAPI(title="Quran Recitation Comparer API") | |
class ComparisonResult(BaseModel): | |
similarity_score: float | |
interpretation: str | |
class QuranRecitationComparer: | |
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", token=None): | |
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model.""" | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Load model and processor once during initialization | |
if token: | |
self.processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=token) | |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token) | |
else: | |
self.processor = Wav2Vec2Processor.from_pretrained(model_name) | |
self.model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
self.model = self.model.to(self.device) | |
self.model.eval() | |
# Cache for embeddings to avoid recomputation | |
self.embedding_cache = {} | |
def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True): | |
"""Load and preprocess an audio file.""" | |
if not os.path.exists(file_path): | |
raise FileNotFoundError(f"Audio file not found: {file_path}") | |
y, sr = librosa.load(file_path, sr=target_sr) | |
if normalize: | |
y = librosa.util.normalize(y) | |
if trim_silence: | |
y, _ = librosa.effects.trim(y, top_db=30) | |
return y | |
def get_deep_embedding(self, audio, sr=16000): | |
"""Extract frame-wise deep embeddings using the pretrained model.""" | |
input_values = self.processor( | |
audio, | |
sampling_rate=sr, | |
return_tensors="pt" | |
).input_values.to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(input_values, output_hidden_states=True) | |
hidden_states = outputs.hidden_states[-1] | |
embedding_seq = hidden_states.squeeze(0).cpu().numpy() | |
return embedding_seq | |
def compute_dtw_distance(self, features1, features2): | |
"""Compute the DTW distance between two sequences of features.""" | |
D, wp = dtw(X=features1, Y=features2, metric='euclidean') | |
distance = D[-1, -1] | |
normalized_distance = distance / len(wp) | |
return normalized_distance | |
def interpret_similarity(self, norm_distance): | |
"""Interpret the normalized distance value.""" | |
if norm_distance == 0: | |
result = "The recitations are identical based on the deep embeddings." | |
score = 100 | |
elif norm_distance < 1: | |
result = "The recitations are extremely similar." | |
score = 95 | |
elif norm_distance < 5: | |
result = "The recitations are very similar with minor differences." | |
score = 80 | |
elif norm_distance < 10: | |
result = "The recitations show moderate similarity." | |
score = 60 | |
elif norm_distance < 20: | |
result = "The recitations show some noticeable differences." | |
score = 40 | |
else: | |
result = "The recitations are quite different." | |
score = max(0, 100 - norm_distance) | |
return result, score | |
def get_embedding_for_file(self, file_path): | |
"""Get embedding for a file, using cache if available.""" | |
if file_path in self.embedding_cache: | |
return self.embedding_cache[file_path] | |
audio = self.load_audio(file_path) | |
embedding = self.get_deep_embedding(audio) | |
# Store in cache for future use | |
self.embedding_cache[file_path] = embedding | |
return embedding | |
def predict(self, file_path1, file_path2): | |
""" | |
Predict the similarity between two audio files. | |
This method can be called repeatedly without reloading the model. | |
Args: | |
file_path1 (str): Path to first audio file | |
file_path2 (str): Path to second audio file | |
Returns: | |
float: Similarity score | |
str: Interpretation of similarity | |
""" | |
# Get embeddings (using cache if available) | |
embedding1 = self.get_embedding_for_file(file_path1) | |
embedding2 = self.get_embedding_for_file(file_path2) | |
# Compute DTW distance | |
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T) | |
# Interpret results | |
interpretation, similarity_score = self.interpret_similarity(norm_distance) | |
return similarity_score, interpretation | |
def clear_cache(self): | |
"""Clear the embedding cache to free memory.""" | |
self.embedding_cache = {} | |
# Global variable for the comparer instance | |
comparer = None | |
async def startup_event(): | |
"""Initialize the model when the application starts.""" | |
global comparer | |
print("Initializing model... This may take a moment.") | |
comparer = QuranRecitationComparer( | |
model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", | |
token=HF_TOKEN | |
) | |
print("Model initialized and ready for predictions!") | |
async def root(): | |
"""Root endpoint to check if the API is running.""" | |
return {"message": "Quran Recitation Comparer API is running", "status": "active"} | |
async def compare_files( | |
file1: UploadFile = File(...), | |
file2: UploadFile = File(...) | |
): | |
""" | |
Compare two audio files and return similarity metrics. | |
- **file1**: First audio file (MP3, WAV, etc.) | |
- **file2**: Second audio file (MP3, WAV, etc.) | |
Returns similarity score and interpretation. | |
""" | |
if not comparer: | |
raise HTTPException(status_code=500, detail="Model not initialized. Please try again later.") | |
temp_dir = tempfile.mkdtemp() | |
try: | |
# Save uploaded files to temporary directory | |
temp_file1 = os.path.join(temp_dir, file1.filename) | |
temp_file2 = os.path.join(temp_dir, file2.filename) | |
with open(temp_file1, "wb") as f: | |
shutil.copyfileobj(file1.file, f) | |
with open(temp_file2, "wb") as f: | |
shutil.copyfileobj(file2.file, f) | |
# Compare the files | |
similarity_score, interpretation = comparer.predict(temp_file1, temp_file2) | |
return ComparisonResult( | |
similarity_score=similarity_score, | |
interpretation=interpretation | |
) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}") | |
finally: | |
# Clean up temporary files | |
shutil.rmtree(temp_dir, ignore_errors=True) | |
async def clear_cache(): | |
"""Clear the embedding cache to free memory.""" | |
if not comparer: | |
raise HTTPException(status_code=500, detail="Model not initialized.") | |
comparer.clear_cache() | |
return {"message": "Embedding cache cleared successfully"} | |
if __name__ == "__main__": | |
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True) |