Spaces:
Sleeping
Sleeping
Update main.py
Browse files
main.py
CHANGED
@@ -1,187 +1,68 @@
|
|
1 |
-
|
2 |
-
from pydantic import BaseModel
|
3 |
import torch
|
4 |
import librosa
|
5 |
import numpy as np
|
6 |
-
import os
|
7 |
-
from transformers import AutoProcessor, AutoModelForCTC
|
8 |
import tempfile
|
9 |
-
import
|
10 |
-
import
|
11 |
-
from
|
12 |
-
import warnings
|
13 |
-
|
14 |
-
# Ignore deprecation warnings
|
15 |
-
warnings.filterwarnings("ignore")
|
16 |
-
|
17 |
-
# Load environment variables
|
18 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
19 |
|
20 |
-
app = FastAPI(title="Quran Recitation Comparer API")
|
21 |
-
|
22 |
-
# Add CORS middleware
|
23 |
-
app.add_middleware(
|
24 |
-
CORSMiddleware,
|
25 |
-
allow_origins=["*"],
|
26 |
-
allow_credentials=True,
|
27 |
-
allow_methods=["*"],
|
28 |
-
allow_headers=["*"],
|
29 |
-
)
|
30 |
-
|
31 |
-
class ComparisonResult(BaseModel):
|
32 |
-
similarity_score: float
|
33 |
-
interpretation: str
|
34 |
-
|
35 |
-
# Custom implementation of DTW
|
36 |
-
def custom_dtw(X, Y, metric='euclidean'):
|
37 |
-
"""
|
38 |
-
Custom Dynamic Time Warping implementation.
|
39 |
-
|
40 |
-
Args:
|
41 |
-
X: First sequence
|
42 |
-
Y: Second sequence
|
43 |
-
metric: Distance metric ('euclidean' or 'cosine')
|
44 |
-
|
45 |
-
Returns:
|
46 |
-
D: Cost matrix
|
47 |
-
wp: Warping path
|
48 |
-
"""
|
49 |
-
n, m = len(X), len(Y)
|
50 |
-
D = np.zeros((n + 1, m + 1))
|
51 |
-
D[0, 1:] = np.inf
|
52 |
-
D[1:, 0] = np.inf
|
53 |
-
D[0, 0] = 0
|
54 |
-
|
55 |
-
for i in range(1, n + 1):
|
56 |
-
for j in range(1, m + 1):
|
57 |
-
if metric == 'euclidean':
|
58 |
-
cost = np.sum((X[i-1] - Y[j-1])**2)
|
59 |
-
elif metric == 'cosine':
|
60 |
-
cost = 1 - np.dot(X[i-1], Y[j-1]) / (np.linalg.norm(X[i-1]) * np.linalg.norm(Y[j-1]))
|
61 |
-
D[i, j] = cost + min(D[i-1, j], D[i, j-1], D[i-1, j-1])
|
62 |
-
|
63 |
-
wp = [(n, m)]
|
64 |
-
i, j = n, m
|
65 |
-
while i > 0 or j > 0:
|
66 |
-
if i == 0:
|
67 |
-
j -= 1
|
68 |
-
elif j == 0:
|
69 |
-
i -= 1
|
70 |
-
else:
|
71 |
-
min_idx = np.argmin([D[i-1, j-1], D[i-1, j], D[i, j-1]])
|
72 |
-
if min_idx == 0:
|
73 |
-
i -= 1
|
74 |
-
j -= 1
|
75 |
-
elif min_idx == 1:
|
76 |
-
i -= 1
|
77 |
-
else:
|
78 |
-
j -= 1
|
79 |
-
wp.append((i, j))
|
80 |
-
|
81 |
-
wp.reverse()
|
82 |
-
return D, wp
|
83 |
|
|
|
84 |
class QuranRecitationComparer:
|
85 |
-
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
|
86 |
-
"""
|
|
|
|
|
87 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
self.model = self.model.to(self.device)
|
102 |
-
self.model.eval()
|
103 |
-
# Ensure that hidden states are returned by default
|
104 |
-
self.model.config.output_hidden_states = True
|
105 |
-
print("Model loaded successfully!")
|
106 |
-
except Exception as e:
|
107 |
-
print(f"Error loading model: {str(e)}")
|
108 |
-
raise
|
109 |
-
|
110 |
# Cache for embeddings to avoid recomputation
|
111 |
self.embedding_cache = {}
|
112 |
|
113 |
-
def load_audio(self, file_path, target_sr=16000, normalize=True):
|
114 |
"""Load and preprocess an audio file."""
|
115 |
if not os.path.exists(file_path):
|
116 |
raise FileNotFoundError(f"Audio file not found: {file_path}")
|
117 |
-
|
118 |
-
print(f"Loading audio: {file_path}")
|
119 |
y, sr = librosa.load(file_path, sr=target_sr)
|
120 |
-
|
121 |
if normalize:
|
122 |
y = librosa.util.normalize(y)
|
123 |
-
|
124 |
-
|
125 |
-
trim_y = []
|
126 |
-
threshold = 0.02 # Threshold for silence detection
|
127 |
-
for i in range(len(y)):
|
128 |
-
if abs(y[i]) > threshold:
|
129 |
-
trim_y.append(y[i])
|
130 |
-
|
131 |
-
if len(trim_y) > 0:
|
132 |
-
y = np.array(trim_y)
|
133 |
-
|
134 |
return y
|
135 |
|
136 |
def get_deep_embedding(self, audio, sr=16000):
|
137 |
"""Extract frame-wise deep embeddings using the pretrained model."""
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
|
151 |
-
|
152 |
-
return embedding_seq
|
153 |
-
except Exception as e:
|
154 |
-
print(f"Error in get_deep_embedding: {str(e)}")
|
155 |
-
raise
|
156 |
|
157 |
def compute_dtw_distance(self, features1, features2):
|
158 |
"""Compute the DTW distance between two sequences of features."""
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
print(f"Feature shapes: {features1.shape}, {features2.shape}")
|
165 |
-
|
166 |
-
max_length = 300
|
167 |
-
if features1.shape[0] > max_length or features2.shape[0] > max_length:
|
168 |
-
step1 = max(1, features1.shape[0] // max_length)
|
169 |
-
step2 = max(1, features2.shape[0] // max_length)
|
170 |
-
features1 = features1[::step1]
|
171 |
-
features2 = features2[::step2]
|
172 |
-
print(f"Subsampled feature shapes: {features1.shape}, {features2.shape}")
|
173 |
-
|
174 |
-
try:
|
175 |
-
D, wp = custom_dtw(X=features1, Y=features2, metric='euclidean')
|
176 |
-
distance = D[-1, -1]
|
177 |
-
normalized_distance = distance / len(wp)
|
178 |
-
return normalized_distance
|
179 |
-
except Exception as e:
|
180 |
-
print(f"Error in compute_dtw_distance: {str(e)}")
|
181 |
-
mean_1 = np.mean(features1, axis=0)
|
182 |
-
mean_2 = np.mean(features2, axis=0)
|
183 |
-
euclidean_distance = np.sqrt(np.sum((mean_1 - mean_2) ** 2))
|
184 |
-
return euclidean_distance
|
185 |
|
186 |
def interpret_similarity(self, norm_distance):
|
187 |
"""Interpret the normalized distance value."""
|
@@ -203,142 +84,104 @@ class QuranRecitationComparer:
|
|
203 |
else:
|
204 |
result = "The recitations are quite different."
|
205 |
score = max(0, 100 - norm_distance)
|
206 |
-
|
207 |
return result, score
|
208 |
|
209 |
def get_embedding_for_file(self, file_path):
|
210 |
"""Get embedding for a file, using cache if available."""
|
211 |
if file_path in self.embedding_cache:
|
212 |
-
print(f"Using cached embedding for {file_path}")
|
213 |
return self.embedding_cache[file_path]
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
self.embedding_cache[file_path] = embedding
|
221 |
-
print(f"Embedding shape: {embedding.shape}")
|
222 |
-
|
223 |
-
return embedding
|
224 |
-
except Exception as e:
|
225 |
-
print(f"Error getting embedding: {str(e)}")
|
226 |
-
raise
|
227 |
|
228 |
def predict(self, file_path1, file_path2):
|
229 |
"""
|
230 |
Predict the similarity between two audio files.
|
231 |
-
|
232 |
Args:
|
233 |
-
file_path1 (str): Path to first audio file
|
234 |
-
file_path2 (str): Path to second audio file
|
235 |
-
|
236 |
Returns:
|
237 |
-
float: Similarity score
|
238 |
-
str: Interpretation of similarity
|
239 |
"""
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
interpretation, similarity_score = self.interpret_similarity(norm_distance)
|
250 |
-
print(f"Similarity score: {similarity_score}, Interpretation: {interpretation}")
|
251 |
-
|
252 |
-
return similarity_score, interpretation
|
253 |
-
except Exception as e:
|
254 |
-
print(f"Error in predict: {str(e)}")
|
255 |
-
return 0, f"Error comparing files: {str(e)}"
|
256 |
|
257 |
def clear_cache(self):
|
258 |
"""Clear the embedding cache to free memory."""
|
259 |
self.embedding_cache = {}
|
260 |
-
print("Embedding cache cleared")
|
261 |
|
262 |
-
# Global variable for the comparer instance
|
263 |
-
comparer = None
|
264 |
|
|
|
|
|
265 |
@app.on_event("startup")
|
266 |
-
|
267 |
-
"""Initialize the model when the application starts."""
|
268 |
global comparer
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
except Exception as e:
|
277 |
-
print(f"Error initializing model: {str(e)}")
|
278 |
|
279 |
-
|
|
|
|
|
280 |
async def root():
|
281 |
-
"""
|
282 |
-
|
283 |
-
return {"message": "Quran Recitation Comparer API is running", "status": status}
|
284 |
|
285 |
-
@app.post("/
|
286 |
-
async def
|
287 |
-
file1: UploadFile = File(...),
|
288 |
-
file2: UploadFile = File(...)
|
289 |
-
):
|
290 |
"""
|
291 |
-
Compare two audio files and return similarity
|
292 |
-
|
293 |
-
- **file1**: First audio file (MP3, WAV, etc.)
|
294 |
-
- **file2**: Second audio file (MP3, WAV, etc.)
|
295 |
|
296 |
-
|
|
|
297 |
"""
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
print(f"Received files: {file1.filename} and {file2.filename}")
|
302 |
-
temp_dir = tempfile.mkdtemp()
|
303 |
-
print(f"Created temporary directory: {temp_dir}")
|
304 |
-
|
305 |
try:
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
return
|
322 |
-
|
323 |
-
interpretation=interpretation
|
324 |
-
)
|
325 |
-
|
326 |
except Exception as e:
|
327 |
-
|
328 |
-
raise HTTPException(status_code=500, detail=f"Error processing files: {str(e)}")
|
329 |
-
|
330 |
finally:
|
331 |
-
|
332 |
-
|
|
|
|
|
|
|
333 |
|
334 |
-
|
|
|
335 |
async def clear_cache():
|
336 |
-
"""
|
337 |
-
if
|
338 |
-
|
339 |
-
|
340 |
comparer.clear_cache()
|
341 |
-
return {"message": "
|
342 |
-
|
343 |
-
if __name__ == "__main__":
|
344 |
-
uvicorn.run("main:app", host="0.0.0.0", port=7860, log_level="info")
|
|
|
1 |
+
import os
|
|
|
2 |
import torch
|
3 |
import librosa
|
4 |
import numpy as np
|
|
|
|
|
5 |
import tempfile
|
6 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
7 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
|
8 |
+
from librosa.sequence import dtw
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
app = FastAPI(title="Quran Recitation Comparer API", description="Compares two Quran recitations using a deep wav2vec2 model.", version="1.0")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# --- Core Class Definition ---
|
13 |
class QuranRecitationComparer:
|
14 |
+
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", auth_token=None):
|
15 |
+
"""
|
16 |
+
Initialize the Quran recitation comparer with a specific Wav2Vec2 model.
|
17 |
+
"""
|
18 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
|
20 |
+
# Load model and processor once during initialization
|
21 |
+
if auth_token:
|
22 |
+
self.processor = Wav2Vec2Processor.from_pretrained(model_name, token=auth_token)
|
23 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, token=auth_token)
|
24 |
+
else:
|
25 |
+
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
|
26 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
27 |
+
|
28 |
+
self.model = self.model.to(self.device)
|
29 |
+
self.model.eval()
|
30 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
# Cache for embeddings to avoid recomputation
|
32 |
self.embedding_cache = {}
|
33 |
|
34 |
+
def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
|
35 |
"""Load and preprocess an audio file."""
|
36 |
if not os.path.exists(file_path):
|
37 |
raise FileNotFoundError(f"Audio file not found: {file_path}")
|
|
|
|
|
38 |
y, sr = librosa.load(file_path, sr=target_sr)
|
|
|
39 |
if normalize:
|
40 |
y = librosa.util.normalize(y)
|
41 |
+
if trim_silence:
|
42 |
+
y, _ = librosa.effects.trim(y, top_db=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return y
|
44 |
|
45 |
def get_deep_embedding(self, audio, sr=16000):
|
46 |
"""Extract frame-wise deep embeddings using the pretrained model."""
|
47 |
+
input_values = self.processor(
|
48 |
+
audio,
|
49 |
+
sampling_rate=sr,
|
50 |
+
return_tensors="pt"
|
51 |
+
).input_values.to(self.device)
|
52 |
+
|
53 |
+
with torch.no_grad():
|
54 |
+
outputs = self.model(input_values, output_hidden_states=True)
|
55 |
+
|
56 |
+
hidden_states = outputs.hidden_states[-1]
|
57 |
+
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
|
58 |
+
return embedding_seq
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
def compute_dtw_distance(self, features1, features2):
|
61 |
"""Compute the DTW distance between two sequences of features."""
|
62 |
+
D, wp = dtw(X=features1, Y=features2, metric='euclidean')
|
63 |
+
distance = D[-1, -1]
|
64 |
+
normalized_distance = distance / len(wp)
|
65 |
+
return normalized_distance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
def interpret_similarity(self, norm_distance):
|
68 |
"""Interpret the normalized distance value."""
|
|
|
84 |
else:
|
85 |
result = "The recitations are quite different."
|
86 |
score = max(0, 100 - norm_distance)
|
|
|
87 |
return result, score
|
88 |
|
89 |
def get_embedding_for_file(self, file_path):
|
90 |
"""Get embedding for a file, using cache if available."""
|
91 |
if file_path in self.embedding_cache:
|
|
|
92 |
return self.embedding_cache[file_path]
|
93 |
+
audio = self.load_audio(file_path)
|
94 |
+
embedding = self.get_deep_embedding(audio)
|
95 |
+
# Store in cache for future use
|
96 |
+
self.embedding_cache[file_path] = embedding
|
97 |
+
return embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
def predict(self, file_path1, file_path2):
|
100 |
"""
|
101 |
Predict the similarity between two audio files.
|
|
|
102 |
Args:
|
103 |
+
file_path1 (str): Path to first audio file.
|
104 |
+
file_path2 (str): Path to second audio file.
|
|
|
105 |
Returns:
|
106 |
+
(float, str): Similarity score and interpretation.
|
|
|
107 |
"""
|
108 |
+
embedding1 = self.get_embedding_for_file(file_path1)
|
109 |
+
embedding2 = self.get_embedding_for_file(file_path2)
|
110 |
+
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
|
111 |
+
interpretation, similarity_score = self.interpret_similarity(norm_distance)
|
112 |
+
# Optionally log the results instead of printing in production
|
113 |
+
print(f"Similarity Score: {similarity_score:.1f}/100")
|
114 |
+
print(f"Interpretation: {interpretation}")
|
115 |
+
return similarity_score, interpretation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
def clear_cache(self):
|
118 |
"""Clear the embedding cache to free memory."""
|
119 |
self.embedding_cache = {}
|
|
|
120 |
|
|
|
|
|
121 |
|
122 |
+
# --- FastAPI Startup Event ---
|
123 |
+
# In production, consider loading sensitive tokens from environment variables or configuration files.
|
124 |
@app.on_event("startup")
|
125 |
+
def startup_event():
|
|
|
126 |
global comparer
|
127 |
+
# For production, do not hardcode tokens; use os.environ.get(...) or a configuration system.
|
128 |
+
auth_token = os.environ.get("HF_TOKEN")
|
129 |
+
comparer = QuranRecitationComparer(
|
130 |
+
model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic",
|
131 |
+
auth_token=auth_token
|
132 |
+
)
|
133 |
+
print("Model initialized and ready for predictions!")
|
|
|
|
|
134 |
|
135 |
+
|
136 |
+
# --- API Endpoints ---
|
137 |
+
@app.get("/", summary="Health Check")
|
138 |
async def root():
|
139 |
+
return {"message": "Quran Recitation Comparer API is up and running."}
|
140 |
+
|
|
|
141 |
|
142 |
+
@app.post("/predict", summary="Compare Two Audio Files", response_model=dict)
|
143 |
+
async def predict(file1: UploadFile = File(...), file2: UploadFile = File(...)):
|
|
|
|
|
|
|
144 |
"""
|
145 |
+
Compare two uploaded audio files and return a similarity score along with an interpretation.
|
|
|
|
|
|
|
146 |
|
147 |
+
- **file1**: The first audio file.
|
148 |
+
- **file2**: The second audio file.
|
149 |
"""
|
150 |
+
tmp1_path = None
|
151 |
+
tmp2_path = None
|
152 |
+
|
|
|
|
|
|
|
|
|
153 |
try:
|
154 |
+
# Save first file to a temporary location
|
155 |
+
suffix1 = os.path.splitext(file1.filename)[1] or ".wav"
|
156 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix1) as tmp1:
|
157 |
+
content1 = await file1.read()
|
158 |
+
tmp1.write(content1)
|
159 |
+
tmp1_path = tmp1.name
|
160 |
+
|
161 |
+
# Save second file to a temporary location
|
162 |
+
suffix2 = os.path.splitext(file2.filename)[1] or ".wav"
|
163 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix2) as tmp2:
|
164 |
+
content2 = await file2.read()
|
165 |
+
tmp2.write(content2)
|
166 |
+
tmp2_path = tmp2.name
|
167 |
+
|
168 |
+
similarity_score, interpretation = comparer.predict(tmp1_path, tmp2_path)
|
169 |
+
return {"similarity_score": similarity_score, "interpretation": interpretation}
|
170 |
+
|
|
|
|
|
|
|
171 |
except Exception as e:
|
172 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
173 |
finally:
|
174 |
+
# Clean up temporary files
|
175 |
+
if tmp1_path and os.path.exists(tmp1_path):
|
176 |
+
os.remove(tmp1_path)
|
177 |
+
if tmp2_path and os.path.exists(tmp2_path):
|
178 |
+
os.remove(tmp2_path)
|
179 |
|
180 |
+
|
181 |
+
@app.post("/clear_cache", summary="Clear Embedding Cache", response_model=dict)
|
182 |
async def clear_cache():
|
183 |
+
"""
|
184 |
+
Clear the embedding cache. This can help free memory if many comparisons have been made.
|
185 |
+
"""
|
|
|
186 |
comparer.clear_cache()
|
187 |
+
return {"message": "Cache cleared."}
|
|
|
|
|
|