Spaces:
Sleeping
Sleeping
chore: cleanup
Browse files- app/app.py +2 -38
app/app.py
CHANGED
@@ -34,26 +34,14 @@ def process_file(*, file: AskFileResponse) -> list:
|
|
34 |
with NamedTemporaryFile() as tempfile:
|
35 |
tempfile.write(file.content)
|
36 |
|
37 |
-
######################################################################
|
38 |
-
#
|
39 |
-
# 1. Load the PDF
|
40 |
-
#
|
41 |
-
######################################################################
|
42 |
loader = PDFPlumberLoader(tempfile.name)
|
43 |
|
44 |
-
######################################################################
|
45 |
documents = loader.load()
|
46 |
|
47 |
-
######################################################################
|
48 |
-
#
|
49 |
-
# 2. Split the text
|
50 |
-
#
|
51 |
-
######################################################################
|
52 |
text_splitter = RecursiveCharacterTextSplitter(
|
53 |
chunk_size=3000,
|
54 |
chunk_overlap=100
|
55 |
)
|
56 |
-
######################################################################
|
57 |
|
58 |
docs = text_splitter.split_documents(documents)
|
59 |
|
@@ -72,16 +60,10 @@ def create_search_engine(*, file: AskFileResponse) -> VectorStore:
|
|
72 |
docs = process_file(file=file)
|
73 |
cl.user_session.set("docs", docs)
|
74 |
|
75 |
-
##########################################################################
|
76 |
-
#
|
77 |
-
# 3. Set the Encoder model for creating embeddings
|
78 |
-
#
|
79 |
-
##########################################################################
|
80 |
encoder = OpenAIEmbeddings(
|
81 |
model="text-embedding-ada-002"
|
82 |
)
|
83 |
-
|
84 |
-
|
85 |
# Initialize Chromadb client and settings, reset to ensure we get a clean
|
86 |
# search engine
|
87 |
client = chromadb.EphemeralClient()
|
@@ -95,20 +77,12 @@ def create_search_engine(*, file: AskFileResponse) -> VectorStore:
|
|
95 |
)
|
96 |
search_engine._client.reset()
|
97 |
|
98 |
-
##########################################################################
|
99 |
-
#
|
100 |
-
# 4. Create the document search engine. Remember to add
|
101 |
-
# client_settings using the above settings.
|
102 |
-
#
|
103 |
-
##########################################################################
|
104 |
-
|
105 |
search_engine = Chroma.from_documents(
|
106 |
client=client,
|
107 |
documents=docs,
|
108 |
embedding=encoder,
|
109 |
client_settings=client_settings
|
110 |
)
|
111 |
-
##########################################################################
|
112 |
|
113 |
return search_engine
|
114 |
|
@@ -140,27 +114,17 @@ async def start():
|
|
140 |
streaming=True
|
141 |
)
|
142 |
|
143 |
-
##########################################################################
|
144 |
-
#
|
145 |
-
# 5. Create the chain / tool for RetrievalQAWithSourcesChain.
|
146 |
-
#
|
147 |
-
##########################################################################
|
148 |
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
149 |
llm=llm,
|
150 |
chain_type="stuff",
|
151 |
retriever=search_engine.as_retriever(max_tokens_limit=4097),
|
152 |
-
|
153 |
-
# 6. Customize prompts to improve summarization and question
|
154 |
-
# answering performance. Perhaps create your own prompt in prompts.py?
|
155 |
-
######################################################################
|
156 |
chain_type_kwargs={
|
157 |
"prompt": PROMPT,
|
158 |
"document_prompt": EXAMPLE_PROMPT
|
159 |
},
|
160 |
)
|
161 |
-
##########################################################################
|
162 |
|
163 |
-
# await msg.update(content=f"`{file.name}` processed. You can now ask questions!")
|
164 |
msg.content = f"`{file.name}` processed. You can now ask questions!"
|
165 |
await msg.update()
|
166 |
|
|
|
34 |
with NamedTemporaryFile() as tempfile:
|
35 |
tempfile.write(file.content)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
37 |
loader = PDFPlumberLoader(tempfile.name)
|
38 |
|
|
|
39 |
documents = loader.load()
|
40 |
|
|
|
|
|
|
|
|
|
|
|
41 |
text_splitter = RecursiveCharacterTextSplitter(
|
42 |
chunk_size=3000,
|
43 |
chunk_overlap=100
|
44 |
)
|
|
|
45 |
|
46 |
docs = text_splitter.split_documents(documents)
|
47 |
|
|
|
60 |
docs = process_file(file=file)
|
61 |
cl.user_session.set("docs", docs)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
63 |
encoder = OpenAIEmbeddings(
|
64 |
model="text-embedding-ada-002"
|
65 |
)
|
66 |
+
|
|
|
67 |
# Initialize Chromadb client and settings, reset to ensure we get a clean
|
68 |
# search engine
|
69 |
client = chromadb.EphemeralClient()
|
|
|
77 |
)
|
78 |
search_engine._client.reset()
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
search_engine = Chroma.from_documents(
|
81 |
client=client,
|
82 |
documents=docs,
|
83 |
embedding=encoder,
|
84 |
client_settings=client_settings
|
85 |
)
|
|
|
86 |
|
87 |
return search_engine
|
88 |
|
|
|
114 |
streaming=True
|
115 |
)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
117 |
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
118 |
llm=llm,
|
119 |
chain_type="stuff",
|
120 |
retriever=search_engine.as_retriever(max_tokens_limit=4097),
|
121 |
+
|
|
|
|
|
|
|
122 |
chain_type_kwargs={
|
123 |
"prompt": PROMPT,
|
124 |
"document_prompt": EXAMPLE_PROMPT
|
125 |
},
|
126 |
)
|
|
|
127 |
|
|
|
128 |
msg.content = f"`{file.name}` processed. You can now ask questions!"
|
129 |
await msg.update()
|
130 |
|