Spaces:
Running
Running
File size: 17,795 Bytes
851751e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
"""
@Author: Haoxi Ran
@Date: 01/03/2024
@Citation: Towards Realistic Scene Generation with LiDAR Diffusion Models
"""
import math
from itertools import repeat
from typing import List, Tuple, Union
import numpy as np
import torch
from . import build_model, VOXEL_SIZE, MODALITY2MODEL, MODAL2BATCHSIZE, DATASET_CONFIG, AGG_TYPE, NUM_SECTORS, \
TYPE2DATASET, DATA_CONFIG
try:
from torchsparse import SparseTensor, PointTensor
from torchsparse.utils.collate import sparse_collate_fn
from .modules.chamfer3D.dist_chamfer_3D import chamfer_3DDist
from .modules.chamfer2D.dist_chamfer_2D import chamfer_2DDist
from .modules.emd.emd_module import emdModule
except:
print(
'To install torchsparse 1.4.0, please refer to https://github.com/mit-han-lab/torchsparse/tree/74099d10a51c71c14318bce63d6421f698b24f24')
def ravel_hash(x: np.ndarray) -> np.ndarray:
assert x.ndim == 2, x.shape
x = x - np.min(x, axis=0)
x = x.astype(np.uint64, copy=False)
xmax = np.max(x, axis=0).astype(np.uint64) + 1
h = np.zeros(x.shape[0], dtype=np.uint64)
for k in range(x.shape[1] - 1):
h += x[:, k]
h *= xmax[k + 1]
h += x[:, -1]
return h
def sparse_quantize(coords, voxel_size: Union[float, Tuple[float, ...]] = 1, *, return_index: bool = False,
return_inverse: bool = False) -> List[np.ndarray]:
"""
Modified based on https://github.com/mit-han-lab/torchsparse/blob/462dea4a701f87a7545afb3616bf2cf53dd404f3/torchsparse/utils/quantize.py
"""
if isinstance(voxel_size, (float, int)):
voxel_size = tuple(repeat(voxel_size, coords.shape[1]))
assert isinstance(voxel_size, tuple) and len(voxel_size) in [2, 3] # support 2D and 3D coordinates only
voxel_size = np.array(voxel_size)
coords = np.floor(coords / voxel_size).astype(np.int32)
_, indices, inverse_indices = np.unique(
ravel_hash(coords), return_index=True, return_inverse=True
)
coords = coords[indices]
outputs = [coords]
if return_index:
outputs += [indices]
if return_inverse:
outputs += [inverse_indices]
return outputs[0] if len(outputs) == 1 else outputs
def pcd2range(pcd, size, fov, depth_range, remission=None, labels=None, **kwargs):
# laser parameters
fov_up = fov[0] / 180.0 * np.pi # field of view up in rad
fov_down = fov[1] / 180.0 * np.pi # field of view down in rad
fov_range = abs(fov_down) + abs(fov_up) # get field of view total in rad
# get depth (distance) of all points
depth = np.linalg.norm(pcd, 2, axis=1)
# mask points out of range
mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
depth, pcd = depth[mask], pcd[mask]
# get scan components
scan_x, scan_y, scan_z = pcd[:, 0], pcd[:, 1], pcd[:, 2]
# get angles of all points
yaw = -np.arctan2(scan_y, scan_x)
pitch = np.arcsin(scan_z / depth)
# get projections in image coords
proj_x = 0.5 * (yaw / np.pi + 1.0) # in [0.0, 1.0]
proj_y = 1.0 - (pitch + abs(fov_down)) / fov_range # in [0.0, 1.0]
# scale to image size using angular resolution
proj_x *= size[1] # in [0.0, W]
proj_y *= size[0] # in [0.0, H]
# round and clamp for use as index
proj_x = np.maximum(0, np.minimum(size[1] - 1, np.floor(proj_x))).astype(np.int32) # in [0,W-1]
proj_y = np.maximum(0, np.minimum(size[0] - 1, np.floor(proj_y))).astype(np.int32) # in [0,H-1]
# order in decreasing depth
order = np.argsort(depth)[::-1]
proj_x, proj_y = proj_x[order], proj_y[order]
# project depth
depth = depth[order]
proj_range = np.full(size, -1, dtype=np.float32)
proj_range[proj_y, proj_x] = depth
# project point feature
if remission is not None:
remission = remission[mask][order]
proj_feature = np.full(size, -1, dtype=np.float32)
proj_feature[proj_y, proj_x] = remission
elif labels is not None:
labels = labels[mask][order]
proj_feature = np.full(size, 0, dtype=np.float32)
proj_feature[proj_y, proj_x] = labels
else:
proj_feature = None
return proj_range, proj_feature
def range2xyz(range_img, fov, depth_range, depth_scale, log_scale=True, **kwargs):
# laser parameters
size = range_img.shape
fov_up = fov[0] / 180.0 * np.pi # field of view up in rad
fov_down = fov[1] / 180.0 * np.pi # field of view down in rad
fov_range = abs(fov_down) + abs(fov_up) # get field of view total in rad
# inverse transform from depth
if log_scale:
depth = (np.exp2(range_img * depth_scale) - 1)
else:
depth = range_img
scan_x, scan_y = np.meshgrid(np.arange(size[1]), np.arange(size[0]))
scan_x = scan_x.astype(np.float64) / size[1]
scan_y = scan_y.astype(np.float64) / size[0]
yaw = np.pi * (scan_x * 2 - 1)
pitch = (1.0 - scan_y) * fov_range - abs(fov_down)
xyz = -np.ones((3, *size))
xyz[0] = np.cos(yaw) * np.cos(pitch) * depth
xyz[1] = -np.sin(yaw) * np.cos(pitch) * depth
xyz[2] = np.sin(pitch) * depth
# mask out invalid points
mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
xyz[:, ~mask] = -1
return xyz
def pcd2voxel(pcd):
pcd_voxel = np.round(pcd / VOXEL_SIZE)
pcd_voxel = pcd_voxel - pcd_voxel.min(0, keepdims=1)
feat = np.concatenate((pcd, -np.ones((pcd.shape[0], 1))), axis=1) # -1 for remission placeholder
_, inds, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
feat = torch.FloatTensor(feat[inds])
pcd_voxel = torch.LongTensor(pcd_voxel[inds])
lidar = SparseTensor(feat, pcd_voxel)
output = {'lidar': lidar}
return output
def pcd2voxel_full(data_type, *args):
config = DATA_CONFIG[data_type]
x_range, y_range, z_range = config['x'], config['y'], config['z']
vol_shape = (math.ceil((x_range[1] - x_range[0]) / VOXEL_SIZE), math.ceil((y_range[1] - y_range[0]) / VOXEL_SIZE),
math.ceil((z_range[1] - z_range[0]) / VOXEL_SIZE))
min_bound = (math.ceil((x_range[0]) / VOXEL_SIZE), math.ceil((y_range[0]) / VOXEL_SIZE),
math.ceil((z_range[0]) / VOXEL_SIZE))
output = tuple()
for data in args:
volume_list = []
for pcd in data:
# mask out invalid points
mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
mask_z = np.logical_and(pcd[:, 2] > z_range[0], pcd[:, 2] < z_range[1])
mask = mask_x & mask_y & mask_z
pcd = pcd[mask]
# voxelize
pcd_voxel = np.floor(pcd / VOXEL_SIZE)
_, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
pcd_voxel = pcd_voxel[indices]
pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)
# 2D bev grid
vol = np.zeros(vol_shape, dtype=np.float32)
vol[pcd_voxel[:, 0], pcd_voxel[:, 1], pcd_voxel[:, 2]] = 1
volume_list.append(vol)
output += (volume_list,)
return output
# def pcd2bev_full(data_type, *args, voxel_size=VOXEL_SIZE):
# config = DATA_CONFIG[data_type]
# x_range, y_range = config['x'], config['y']
# vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
# min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))
#
# output = tuple()
# for data in args:
# volume_list = []
# for pcd in data:
# # mask out invalid points
# mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
# mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
# mask = mask_x & mask_y
# pcd = pcd[mask][:, :2] # keep x,y coord
#
# # voxelize
# pcd_voxel = np.floor(pcd / voxel_size)
# _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
# pcd_voxel = pcd_voxel[indices]
# pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)
#
# # 2D bev grid
# vol = np.zeros(vol_shape, dtype=np.float32)
# vol[pcd_voxel[:, 0], pcd_voxel[:, 1]] = 1
# volume_list.append(vol)
# output += (volume_list,)
# return output
def pcd2bev_sum(data_type, *args, voxel_size=VOXEL_SIZE):
config = DATA_CONFIG[data_type]
x_range, y_range = config['x'], config['y']
vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))
output = tuple()
for data in args:
volume_sum = np.zeros(vol_shape, np.float32)
for pcd in data:
# mask out invalid points
mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
mask = mask_x & mask_y
pcd = pcd[mask][:, :2] # keep x,y coord
# voxelize
pcd_voxel = np.floor(pcd / voxel_size)
_, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
pcd_voxel = pcd_voxel[indices]
pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)
# summation
volume_sum[pcd_voxel[:, 0], pcd_voxel[:, 1]] += 1.
output += (volume_sum,)
return output
def pcd2bev_bin(data_type, *args, voxel_size=0.5):
config = DATA_CONFIG[data_type]
x_range, y_range = config['x'], config['y']
vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))
output = tuple()
for data in args:
pcd_list = []
for pcd in data:
# mask out invalid points
mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
mask = mask_x & mask_y
pcd = pcd[mask][:, :2] # keep x,y coord
# voxelize
pcd_voxel = np.floor(pcd / voxel_size)
_, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
pcd_voxel = pcd_voxel[indices]
pcd_voxel = ((pcd_voxel - min_bound) / vol_shape).astype(np.float32)
pcd_list.append(pcd_voxel)
output += (pcd_list,)
return output
def bev_sample(data_type, *args, voxel_size=0.5):
config = DATA_CONFIG[data_type]
x_range, y_range = config['x'], config['y']
output = tuple()
for data in args:
pcd_list = []
for pcd in data:
# mask out invalid points
mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
mask = mask_x & mask_y
pcd = pcd[mask][:, :2] # keep x,y coord
# voxelize
pcd_voxel = np.floor(pcd / voxel_size)
_, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
pcd = pcd[indices]
pcd_list.append(pcd)
output += (pcd_list,)
return output
def preprocess_pcd(pcd, **kwargs):
depth = np.linalg.norm(pcd, 2, axis=1)
mask = np.logical_and(depth > kwargs['depth_range'][0], depth < kwargs['depth_range'][1])
pcd = pcd[mask]
return pcd
def preprocess_range(pcd, **kwargs):
depth_img = pcd2range(pcd, **kwargs)[0]
xyz_img = range2xyz(depth_img, log_scale=False, **kwargs)
depth_img = depth_img[None]
img = np.vstack([depth_img, xyz_img])
return img
def batch2list(batch_dict, agg_type='depth', **kwargs):
"""
Aggregation Type: Default 'depth', ['all', 'sector', 'depth']
"""
output_list = []
batch_indices = batch_dict['batch_indices']
for b_idx in range(batch_indices.max() + 1):
# avg all
if agg_type == 'all':
logits = batch_dict['logits'][batch_indices == b_idx].mean(0)
# avg on sectors
elif agg_type == 'sector':
logits = batch_dict['logits'][batch_indices == b_idx]
coords = batch_dict['coords'][batch_indices == b_idx].float()
coords = coords - coords.mean(0)
angle = torch.atan2(coords[:, 1], coords[:, 0]) # [-pi, pi]
sector_range = torch.linspace(-np.pi - 1e-4, np.pi + 1e-4, NUM_SECTORS + 1)
logits_list = []
for i in range(NUM_SECTORS):
sector_indices = torch.where((angle >= sector_range[i]) & (angle < sector_range[i + 1]))[0]
sector_logits = logits[sector_indices].mean(0)
sector_logits = torch.nan_to_num(sector_logits, 0.)
logits_list.append(sector_logits)
logits = torch.cat(logits_list) # dim: 768
# avg by depth
elif agg_type == 'depth':
logits = batch_dict['logits'][batch_indices == b_idx]
coords = batch_dict['coords'][batch_indices == b_idx].float()
coords = coords - coords.mean(0)
bev_depth = torch.norm(coords, dim=-1) * VOXEL_SIZE
sector_range = torch.linspace(kwargs['depth_range'][0] + 3, kwargs['depth_range'][1], NUM_SECTORS + 1)
sector_range[0] = 0.
logits_list = []
for i in range(NUM_SECTORS):
sector_indices = torch.where((bev_depth >= sector_range[i]) & (bev_depth < sector_range[i + 1]))[0]
sector_logits = logits[sector_indices].mean(0)
sector_logits = torch.nan_to_num(sector_logits, 0.)
logits_list.append(sector_logits)
logits = torch.cat(logits_list) # dim: 768
else:
raise NotImplementedError
output_list.append(logits.detach().cpu().numpy())
return output_list
def compute_logits(data_type, modality, *args):
assert data_type in ['32', '64']
assert modality in ['range', 'voxel', 'point_voxel']
is_voxel = 'voxel' in modality
dataset_name = TYPE2DATASET[data_type]
dataset_config = DATASET_CONFIG[dataset_name]
bs = MODAL2BATCHSIZE[modality]
model = build_model(dataset_name, MODALITY2MODEL[modality], device='cuda')
output = tuple()
for data in args:
all_logits_list = []
for i in range(math.ceil(len(data) / bs)):
batch = data[i * bs:(i + 1) * bs]
if is_voxel:
batch = [pcd2voxel(preprocess_pcd(pcd, **dataset_config)) for pcd in batch]
batch = sparse_collate_fn(batch)
batch = {k: v.cuda() if isinstance(v, (torch.Tensor, SparseTensor, PointTensor)) else v for k, v in
batch.items()}
with torch.no_grad():
batch_out = model(batch, return_final_logits=True)
batch_out = batch2list(batch_out, AGG_TYPE, **dataset_config)
all_logits_list.extend(batch_out)
else:
batch = [preprocess_range(pcd, **dataset_config) for pcd in batch]
batch = torch.from_numpy(np.stack(batch)).float().cuda()
with torch.no_grad():
batch_out = model(batch, return_final_logits=True, agg_type=AGG_TYPE)
all_logits_list.append(batch_out)
if is_voxel:
all_logits = np.stack(all_logits_list)
else:
all_logits = np.vstack(all_logits_list)
output += (all_logits,)
del model, batch, batch_out
torch.cuda.empty_cache()
return output
def compute_pairwise_cd(x, y, module=None):
if module is None:
module = chamfer_3DDist()
if x.ndim == 2 and y.ndim == 2:
x, y = x[None], y[None]
x, y = torch.from_numpy(x).cuda(), torch.from_numpy(y).cuda()
dist1, dist2, _, _ = module(x, y)
dist = (dist1.mean() + dist2.mean()) / 2
return dist.item()
def compute_pairwise_cd_batch(reference, samples):
ndim = reference.ndim
assert ndim in [2, 3]
module = chamfer_3DDist() if ndim == 3 else chamfer_2DDist()
len_r, len_s = reference.shape[0], [s.shape[0] for s in samples]
max_len = max([len_r] + len_s)
reference = torch.from_numpy(
np.vstack([reference, np.ones((max_len - reference.shape[0], ndim), dtype=np.float32) * 1e6])).cuda()
samples = [np.vstack([s, np.ones((max_len - s.shape[0], ndim), dtype=np.float32) * 1e6]) for s in samples]
samples = torch.from_numpy(np.stack(samples)).cuda()
reference = reference.expand_as(samples)
dist_r, dist_s, _, _ = module(reference, samples)
results = []
for i in range(samples.shape[0]):
dist1, dist2, len1, len2 = dist_r[i], dist_s[i], len_r, len_s[i]
dist = (dist1[:len1].mean() + dist2[:len2].mean()) / 2.
results.append(dist.item())
return results
def compute_pairwise_emd(x, y, module=None):
if module is None:
module = emdModule()
n_points = min(x.shape[0], y.shape[0])
n_points = n_points - n_points % 1024
x, y = x[:n_points], y[:n_points]
if x.ndim == 2 and y.ndim == 2:
x, y = x[None], y[None]
x, y = torch.from_numpy(x).cuda(), torch.from_numpy(y).cuda()
dist, _ = module(x, y, 0.005, 50)
dist = torch.sqrt(dist).mean()
return dist.item()
|