File size: 17,795 Bytes
851751e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
"""
@Author: Haoxi Ran
@Date: 01/03/2024
@Citation: Towards Realistic Scene Generation with LiDAR Diffusion Models

"""

import math
from itertools import repeat
from typing import List, Tuple, Union
import numpy as np
import torch

from . import build_model, VOXEL_SIZE, MODALITY2MODEL, MODAL2BATCHSIZE, DATASET_CONFIG, AGG_TYPE, NUM_SECTORS, \
    TYPE2DATASET, DATA_CONFIG

try:
    from torchsparse import SparseTensor, PointTensor
    from torchsparse.utils.collate import sparse_collate_fn
    from .modules.chamfer3D.dist_chamfer_3D import chamfer_3DDist
    from .modules.chamfer2D.dist_chamfer_2D import chamfer_2DDist
    from .modules.emd.emd_module import emdModule
except:
    print(
        'To install torchsparse 1.4.0, please refer to https://github.com/mit-han-lab/torchsparse/tree/74099d10a51c71c14318bce63d6421f698b24f24')


def ravel_hash(x: np.ndarray) -> np.ndarray:
    assert x.ndim == 2, x.shape

    x = x - np.min(x, axis=0)
    x = x.astype(np.uint64, copy=False)
    xmax = np.max(x, axis=0).astype(np.uint64) + 1

    h = np.zeros(x.shape[0], dtype=np.uint64)
    for k in range(x.shape[1] - 1):
        h += x[:, k]
        h *= xmax[k + 1]
    h += x[:, -1]
    return h


def sparse_quantize(coords, voxel_size: Union[float, Tuple[float, ...]] = 1, *, return_index: bool = False,
                    return_inverse: bool = False) -> List[np.ndarray]:
    """
    Modified based on https://github.com/mit-han-lab/torchsparse/blob/462dea4a701f87a7545afb3616bf2cf53dd404f3/torchsparse/utils/quantize.py

    """
    if isinstance(voxel_size, (float, int)):
        voxel_size = tuple(repeat(voxel_size, coords.shape[1]))
    assert isinstance(voxel_size, tuple) and len(voxel_size) in [2, 3]  # support 2D and 3D coordinates only

    voxel_size = np.array(voxel_size)
    coords = np.floor(coords / voxel_size).astype(np.int32)

    _, indices, inverse_indices = np.unique(
        ravel_hash(coords), return_index=True, return_inverse=True
    )
    coords = coords[indices]

    outputs = [coords]
    if return_index:
        outputs += [indices]
    if return_inverse:
        outputs += [inverse_indices]
    return outputs[0] if len(outputs) == 1 else outputs


def pcd2range(pcd, size, fov, depth_range, remission=None, labels=None, **kwargs):
    # laser parameters
    fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
    fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
    fov_range = abs(fov_down) + abs(fov_up)  # get field of view total in rad

    # get depth (distance) of all points
    depth = np.linalg.norm(pcd, 2, axis=1)

    # mask points out of range
    mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
    depth, pcd = depth[mask], pcd[mask]

    # get scan components
    scan_x, scan_y, scan_z = pcd[:, 0], pcd[:, 1], pcd[:, 2]

    # get angles of all points
    yaw = -np.arctan2(scan_y, scan_x)
    pitch = np.arcsin(scan_z / depth)

    # get projections in image coords
    proj_x = 0.5 * (yaw / np.pi + 1.0)  # in [0.0, 1.0]
    proj_y = 1.0 - (pitch + abs(fov_down)) / fov_range  # in [0.0, 1.0]

    # scale to image size using angular resolution
    proj_x *= size[1]  # in [0.0, W]
    proj_y *= size[0]  # in [0.0, H]

    # round and clamp for use as index
    proj_x = np.maximum(0, np.minimum(size[1] - 1, np.floor(proj_x))).astype(np.int32)  # in [0,W-1]
    proj_y = np.maximum(0, np.minimum(size[0] - 1, np.floor(proj_y))).astype(np.int32)  # in [0,H-1]

    # order in decreasing depth
    order = np.argsort(depth)[::-1]
    proj_x, proj_y = proj_x[order], proj_y[order]

    # project depth
    depth = depth[order]
    proj_range = np.full(size, -1, dtype=np.float32)
    proj_range[proj_y, proj_x] = depth

    # project point feature
    if remission is not None:
        remission = remission[mask][order]
        proj_feature = np.full(size, -1, dtype=np.float32)
        proj_feature[proj_y, proj_x] = remission
    elif labels is not None:
        labels = labels[mask][order]
        proj_feature = np.full(size, 0, dtype=np.float32)
        proj_feature[proj_y, proj_x] = labels
    else:
        proj_feature = None

    return proj_range, proj_feature


def range2xyz(range_img, fov, depth_range, depth_scale, log_scale=True, **kwargs):
    # laser parameters
    size = range_img.shape
    fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
    fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
    fov_range = abs(fov_down) + abs(fov_up)  # get field of view total in rad

    # inverse transform from depth
    if log_scale:
        depth = (np.exp2(range_img * depth_scale) - 1)
    else:
        depth = range_img

    scan_x, scan_y = np.meshgrid(np.arange(size[1]), np.arange(size[0]))
    scan_x = scan_x.astype(np.float64) / size[1]
    scan_y = scan_y.astype(np.float64) / size[0]

    yaw = np.pi * (scan_x * 2 - 1)
    pitch = (1.0 - scan_y) * fov_range - abs(fov_down)

    xyz = -np.ones((3, *size))
    xyz[0] = np.cos(yaw) * np.cos(pitch) * depth
    xyz[1] = -np.sin(yaw) * np.cos(pitch) * depth
    xyz[2] = np.sin(pitch) * depth

    # mask out invalid points
    mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
    xyz[:, ~mask] = -1

    return xyz


def pcd2voxel(pcd):
    pcd_voxel = np.round(pcd / VOXEL_SIZE)
    pcd_voxel = pcd_voxel - pcd_voxel.min(0, keepdims=1)
    feat = np.concatenate((pcd, -np.ones((pcd.shape[0], 1))), axis=1)  # -1 for remission placeholder
    _, inds, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)

    feat = torch.FloatTensor(feat[inds])
    pcd_voxel = torch.LongTensor(pcd_voxel[inds])
    lidar = SparseTensor(feat, pcd_voxel)
    output = {'lidar': lidar}
    return output


def pcd2voxel_full(data_type, *args):
    config = DATA_CONFIG[data_type]
    x_range, y_range, z_range = config['x'], config['y'], config['z']
    vol_shape = (math.ceil((x_range[1] - x_range[0]) / VOXEL_SIZE), math.ceil((y_range[1] - y_range[0]) / VOXEL_SIZE),
                 math.ceil((z_range[1] - z_range[0]) / VOXEL_SIZE))
    min_bound = (math.ceil((x_range[0]) / VOXEL_SIZE), math.ceil((y_range[0]) / VOXEL_SIZE),
                 math.ceil((z_range[0]) / VOXEL_SIZE))

    output = tuple()
    for data in args:
        volume_list = []
        for pcd in data:
            # mask out invalid points
            mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
            mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
            mask_z = np.logical_and(pcd[:, 2] > z_range[0], pcd[:, 2] < z_range[1])
            mask = mask_x & mask_y & mask_z
            pcd = pcd[mask]

            # voxelize
            pcd_voxel = np.floor(pcd / VOXEL_SIZE)
            _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
            pcd_voxel = pcd_voxel[indices]
            pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)

            # 2D bev grid
            vol = np.zeros(vol_shape, dtype=np.float32)
            vol[pcd_voxel[:, 0], pcd_voxel[:, 1], pcd_voxel[:, 2]] = 1
            volume_list.append(vol)
        output += (volume_list,)
    return output


# def pcd2bev_full(data_type, *args, voxel_size=VOXEL_SIZE):
#     config = DATA_CONFIG[data_type]
#     x_range, y_range = config['x'], config['y']
#     vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
#     min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))
#
#     output = tuple()
#     for data in args:
#         volume_list = []
#         for pcd in data:
#             # mask out invalid points
#             mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
#             mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
#             mask = mask_x & mask_y
#             pcd = pcd[mask][:, :2]  # keep x,y coord
#
#             # voxelize
#             pcd_voxel = np.floor(pcd / voxel_size)
#             _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
#             pcd_voxel = pcd_voxel[indices]
#             pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)
#
#             # 2D bev grid
#             vol = np.zeros(vol_shape, dtype=np.float32)
#             vol[pcd_voxel[:, 0], pcd_voxel[:, 1]] = 1
#             volume_list.append(vol)
#         output += (volume_list,)
#     return output


def pcd2bev_sum(data_type, *args, voxel_size=VOXEL_SIZE):
    config = DATA_CONFIG[data_type]
    x_range, y_range = config['x'], config['y']
    vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
    min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))

    output = tuple()
    for data in args:
        volume_sum = np.zeros(vol_shape, np.float32)
        for pcd in data:
            # mask out invalid points
            mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
            mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
            mask = mask_x & mask_y
            pcd = pcd[mask][:, :2]  # keep x,y coord

            # voxelize
            pcd_voxel = np.floor(pcd / voxel_size)
            _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
            pcd_voxel = pcd_voxel[indices]
            pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)

            # summation
            volume_sum[pcd_voxel[:, 0], pcd_voxel[:, 1]] += 1.
        output += (volume_sum,)
    return output


def pcd2bev_bin(data_type, *args, voxel_size=0.5):
    config = DATA_CONFIG[data_type]
    x_range, y_range = config['x'], config['y']
    vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
    min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))

    output = tuple()
    for data in args:
        pcd_list = []
        for pcd in data:
            # mask out invalid points
            mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
            mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
            mask = mask_x & mask_y
            pcd = pcd[mask][:, :2]  # keep x,y coord

            # voxelize
            pcd_voxel = np.floor(pcd / voxel_size)
            _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
            pcd_voxel = pcd_voxel[indices]
            pcd_voxel = ((pcd_voxel - min_bound) / vol_shape).astype(np.float32)
            pcd_list.append(pcd_voxel)
        output += (pcd_list,)
    return output


def bev_sample(data_type, *args, voxel_size=0.5):
    config = DATA_CONFIG[data_type]
    x_range, y_range = config['x'], config['y']

    output = tuple()
    for data in args:
        pcd_list = []
        for pcd in data:
            # mask out invalid points
            mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
            mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
            mask = mask_x & mask_y
            pcd = pcd[mask][:, :2]  # keep x,y coord

            # voxelize
            pcd_voxel = np.floor(pcd / voxel_size)
            _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
            pcd = pcd[indices]
            pcd_list.append(pcd)
        output += (pcd_list,)
    return output


def preprocess_pcd(pcd, **kwargs):
    depth = np.linalg.norm(pcd, 2, axis=1)
    mask = np.logical_and(depth > kwargs['depth_range'][0], depth < kwargs['depth_range'][1])
    pcd = pcd[mask]
    return pcd


def preprocess_range(pcd, **kwargs):
    depth_img = pcd2range(pcd, **kwargs)[0]
    xyz_img = range2xyz(depth_img, log_scale=False, **kwargs)
    depth_img = depth_img[None]
    img = np.vstack([depth_img, xyz_img])
    return img


def batch2list(batch_dict, agg_type='depth', **kwargs):
    """
    Aggregation Type: Default 'depth', ['all', 'sector', 'depth']
    """
    output_list = []
    batch_indices = batch_dict['batch_indices']
    for b_idx in range(batch_indices.max() + 1):
        # avg all
        if agg_type == 'all':
            logits = batch_dict['logits'][batch_indices == b_idx].mean(0)

        # avg on sectors
        elif agg_type == 'sector':
            logits = batch_dict['logits'][batch_indices == b_idx]
            coords = batch_dict['coords'][batch_indices == b_idx].float()
            coords = coords - coords.mean(0)
            angle = torch.atan2(coords[:, 1], coords[:, 0])  # [-pi, pi]
            sector_range = torch.linspace(-np.pi - 1e-4, np.pi + 1e-4, NUM_SECTORS + 1)
            logits_list = []
            for i in range(NUM_SECTORS):
                sector_indices = torch.where((angle >= sector_range[i]) & (angle < sector_range[i + 1]))[0]
                sector_logits = logits[sector_indices].mean(0)
                sector_logits = torch.nan_to_num(sector_logits, 0.)
                logits_list.append(sector_logits)
            logits = torch.cat(logits_list)  # dim: 768

        # avg by depth
        elif agg_type == 'depth':
            logits = batch_dict['logits'][batch_indices == b_idx]
            coords = batch_dict['coords'][batch_indices == b_idx].float()
            coords = coords - coords.mean(0)
            bev_depth = torch.norm(coords, dim=-1) * VOXEL_SIZE
            sector_range = torch.linspace(kwargs['depth_range'][0] + 3, kwargs['depth_range'][1], NUM_SECTORS + 1)
            sector_range[0] = 0.
            logits_list = []
            for i in range(NUM_SECTORS):
                sector_indices = torch.where((bev_depth >= sector_range[i]) & (bev_depth < sector_range[i + 1]))[0]
                sector_logits = logits[sector_indices].mean(0)
                sector_logits = torch.nan_to_num(sector_logits, 0.)
                logits_list.append(sector_logits)
            logits = torch.cat(logits_list)  # dim: 768

        else:
            raise NotImplementedError

        output_list.append(logits.detach().cpu().numpy())
    return output_list


def compute_logits(data_type, modality, *args):
    assert data_type in ['32', '64']
    assert modality in ['range', 'voxel', 'point_voxel']
    is_voxel = 'voxel' in modality
    dataset_name = TYPE2DATASET[data_type]
    dataset_config = DATASET_CONFIG[dataset_name]
    bs = MODAL2BATCHSIZE[modality]

    model = build_model(dataset_name, MODALITY2MODEL[modality], device='cuda')

    output = tuple()
    for data in args:
        all_logits_list = []
        for i in range(math.ceil(len(data) / bs)):
            batch = data[i * bs:(i + 1) * bs]
            if is_voxel:
                batch = [pcd2voxel(preprocess_pcd(pcd, **dataset_config)) for pcd in batch]
                batch = sparse_collate_fn(batch)
                batch = {k: v.cuda() if isinstance(v, (torch.Tensor, SparseTensor, PointTensor)) else v for k, v in
                         batch.items()}
                with torch.no_grad():
                    batch_out = model(batch, return_final_logits=True)
                    batch_out = batch2list(batch_out, AGG_TYPE, **dataset_config)
                    all_logits_list.extend(batch_out)
            else:
                batch = [preprocess_range(pcd, **dataset_config) for pcd in batch]
                batch = torch.from_numpy(np.stack(batch)).float().cuda()
                with torch.no_grad():
                    batch_out = model(batch, return_final_logits=True, agg_type=AGG_TYPE)
                    all_logits_list.append(batch_out)
        if is_voxel:
            all_logits = np.stack(all_logits_list)
        else:
            all_logits = np.vstack(all_logits_list)
        output += (all_logits,)

    del model, batch, batch_out
    torch.cuda.empty_cache()
    return output


def compute_pairwise_cd(x, y, module=None):
    if module is None:
        module = chamfer_3DDist()
    if x.ndim == 2 and y.ndim == 2:
        x, y = x[None], y[None]
    x, y = torch.from_numpy(x).cuda(), torch.from_numpy(y).cuda()
    dist1, dist2, _, _ = module(x, y)
    dist = (dist1.mean() + dist2.mean()) / 2
    return dist.item()


def compute_pairwise_cd_batch(reference, samples):
    ndim = reference.ndim
    assert ndim in [2, 3]
    module = chamfer_3DDist() if ndim == 3 else chamfer_2DDist()
    len_r, len_s = reference.shape[0], [s.shape[0] for s in samples]
    max_len = max([len_r] + len_s)
    reference = torch.from_numpy(
        np.vstack([reference, np.ones((max_len - reference.shape[0], ndim), dtype=np.float32) * 1e6])).cuda()
    samples = [np.vstack([s, np.ones((max_len - s.shape[0], ndim), dtype=np.float32) * 1e6]) for s in samples]
    samples = torch.from_numpy(np.stack(samples)).cuda()
    reference = reference.expand_as(samples)
    dist_r, dist_s, _, _ = module(reference, samples)

    results = []
    for i in range(samples.shape[0]):
        dist1, dist2, len1, len2 = dist_r[i], dist_s[i], len_r, len_s[i]
        dist = (dist1[:len1].mean() + dist2[:len2].mean()) / 2.
        results.append(dist.item())
    return results


def compute_pairwise_emd(x, y, module=None):
    if module is None:
        module = emdModule()
    n_points = min(x.shape[0], y.shape[0])
    n_points = n_points - n_points % 1024
    x, y = x[:n_points], y[:n_points]
    if x.ndim == 2 and y.ndim == 2:
        x, y = x[None], y[None]
    x, y = torch.from_numpy(x).cuda(), torch.from_numpy(y).cuda()
    dist, _ = module(x, y, 0.005, 50)
    dist = torch.sqrt(dist).mean()
    return dist.item()