Spaces:
Running
Running
File size: 7,080 Bytes
851751e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import math
import numpy as np
def pcd2coord2d(pcd, fov, depth_range, labels=None):
# laser parameters
fov_up = fov[0] / 180.0 * np.pi # field of view up in rad
fov_down = fov[1] / 180.0 * np.pi # field of view down in rad
fov_range = abs(fov_down) + abs(fov_up) # get field of view total in rad
# get depth (distance) of all points
depth = np.linalg.norm(pcd, 2, axis=-1)
# mask points out of range
mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
if pcd.ndim == 3:
mask = mask.all(axis=1)
depth, pcd = depth[mask], pcd[mask]
# get scan components
scan_x, scan_y, scan_z = pcd[..., 0], pcd[..., 1], pcd[..., 2]
# get angles of all points
yaw = -np.arctan2(scan_y, scan_x)
pitch = np.arcsin(scan_z / depth)
# get projections in image coords
proj_x = np.clip(0.5 * (yaw / np.pi + 1.0), 0., 1.) # in [0.0, 1.0]
proj_y = np.clip(1.0 - (pitch + abs(fov_down)) / fov_range, 0., 1.) # in [0.0, 1.0]
proj_coord2d = np.stack([proj_x, proj_y], axis=-1)
if labels is not None:
proj_labels = labels[mask]
else:
proj_labels = None
return proj_coord2d, proj_labels
def pcd2range(pcd, size, fov, depth_range, remission=None, labels=None, **kwargs):
# laser parameters
fov_up = fov[0] / 180.0 * np.pi # field of view up in rad
fov_down = fov[1] / 180.0 * np.pi # field of view down in rad
fov_range = abs(fov_down) + abs(fov_up) # get field of view total in rad
# get depth (distance) of all points
depth = np.linalg.norm(pcd, 2, axis=1)
# mask points out of range
mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
depth, pcd = depth[mask], pcd[mask]
# get scan components
scan_x, scan_y, scan_z = pcd[:, 0], pcd[:, 1], pcd[:, 2]
# get angles of all points
yaw = -np.arctan2(scan_y, scan_x)
pitch = np.arcsin(scan_z / depth)
# get projections in image coords
proj_x = 0.5 * (yaw / np.pi + 1.0) # in [0.0, 1.0]
proj_y = 1.0 - (pitch + abs(fov_down)) / fov_range # in [0.0, 1.0]
# scale to image size using angular resolution
proj_x *= size[1] # in [0.0, W]
proj_y *= size[0] # in [0.0, H]
# round and clamp for use as index
proj_x = np.maximum(0, np.minimum(size[1] - 1, np.floor(proj_x))).astype(np.int32) # in [0,W-1]
proj_y = np.maximum(0, np.minimum(size[0] - 1, np.floor(proj_y))).astype(np.int32) # in [0,H-1]
# order in decreasing depth
order = np.argsort(depth)[::-1]
proj_x, proj_y = proj_x[order], proj_y[order]
# project depth
depth = depth[order]
proj_range = np.full(size, -1, dtype=np.float32)
proj_range[proj_y, proj_x] = depth
# project point feature
if remission is not None:
remission = remission[mask][order]
proj_feature = np.full(size, -1, dtype=np.float32)
proj_feature[proj_y, proj_x] = remission
elif labels is not None:
labels = labels[mask][order]
proj_feature = np.full(size, 0, dtype=np.float32)
proj_feature[proj_y, proj_x] = labels
else:
proj_feature = None
return proj_range, proj_feature
def range2pcd(range_img, fov, depth_range, depth_scale, log_scale=True, label=None, color=None, **kwargs):
# laser parameters
size = range_img.shape
fov_up = fov[0] / 180.0 * np.pi # field of view up in rad
fov_down = fov[1] / 180.0 * np.pi # field of view down in rad
fov_range = abs(fov_down) + abs(fov_up) # get field of view total in rad
# inverse transform from depth
depth = (range_img * depth_scale).flatten()
if log_scale:
depth = np.exp2(depth) - 1
scan_x, scan_y = np.meshgrid(np.arange(size[1]), np.arange(size[0]))
scan_x = scan_x.astype(np.float64) / size[1]
scan_y = scan_y.astype(np.float64) / size[0]
yaw = (np.pi * (scan_x * 2 - 1)).flatten()
pitch = ((1.0 - scan_y) * fov_range - abs(fov_down)).flatten()
pcd = np.zeros((len(yaw), 3))
pcd[:, 0] = np.cos(yaw) * np.cos(pitch) * depth
pcd[:, 1] = -np.sin(yaw) * np.cos(pitch) * depth
pcd[:, 2] = np.sin(pitch) * depth
# mask out invalid points
mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
pcd = pcd[mask, :]
# label
if label is not None:
label = label.flatten()[mask]
# default point color
if color is not None:
color = color.reshape(-1, 3)[mask, :]
else:
color = np.ones((pcd.shape[0], 3)) * [0.7, 0.7, 1]
return pcd, color, label
def range2xyz(range_img, fov, depth_range, depth_scale, log_scale=True, **kwargs):
# laser parameters
size = range_img.shape
fov_up = fov[0] / 180.0 * np.pi # field of view up in rad
fov_down = fov[1] / 180.0 * np.pi # field of view down in rad
fov_range = abs(fov_down) + abs(fov_up) # get field of view total in rad
# inverse transform from depth
if log_scale:
depth = (np.exp2(range_img * depth_scale) - 1)
else:
depth = range_img
scan_x, scan_y = np.meshgrid(np.arange(size[1]), np.arange(size[0]))
scan_x = scan_x.astype(np.float64) / size[1]
scan_y = scan_y.astype(np.float64) / size[0]
yaw = np.pi * (scan_x * 2 - 1)
pitch = (1.0 - scan_y) * fov_range - abs(fov_down)
xyz = -np.ones((3, *size))
xyz[0] = np.cos(yaw) * np.cos(pitch) * depth
xyz[1] = -np.sin(yaw) * np.cos(pitch) * depth
xyz[2] = np.sin(pitch) * depth
# mask out invalid points
mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
xyz[:, ~mask] = -1
return xyz
def pcd2bev(pcd, x_range, y_range, z_range, resolution, **kwargs):
# mask out invalid points
mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
mask_z = np.logical_and(pcd[:, 2] > z_range[0], pcd[:, 2] < z_range[1])
mask = mask_x & mask_y & mask_z
pcd = pcd[mask]
# points to bev coords
bev_x = np.floor((pcd[:, 0] - x_range[0]) / resolution).astype(np.int32)
bev_y = np.floor((pcd[:, 1] - y_range[0]) / resolution).astype(np.int32)
# 2D bev grid
bev_shape = (math.ceil((x_range[1] - x_range[0]) // resolution), math.ceil((y_range[1] - y_range[0]) // resolution))
bev_grid = np.zeros(bev_shape, dtype=np.float64)
# populate the BEV grid with bev coords
bev_grid[bev_x, bev_y] = 1
return bev_grid
if __name__ == '__main__':
# test = np.loadtxt('test_range.txt')
# pcd, _, _ = range2pcd(test, (32, 1024), (10, -30))
# np.savetxt('test_pcd.txt', pcd, fmt='%.4f')
# import matplotlib.pyplot as plt
# pcd = np.loadtxt('test_origin.txt')
# bev_grid = pcd2bev(pcd)
# plt.imshow(bev_grid[:, :, 0], cmap='gray') # Display the BEV for the first height level
# plt.savefig('test.png', dpi=300, bbox_inches='tight', pad_inches=0, transparent=True)
from PIL import Image
img = Image.open('assets/kitti/range.png')
img.convert('L')
img = np.array(img) / 255.
|