Spaces:
Running
Running
File size: 5,412 Bytes
851751e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
#include <stdio.h>
#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <vector>
__global__ void NmDistanceKernel(int b,int n,const float * xyz,int m,const float * xyz2,float * result,int * result_i){
const int batch=512;
__shared__ float buf[batch*2];
for (int i=blockIdx.x;i<b;i+=gridDim.x){
for (int k2=0;k2<m;k2+=batch){
int end_k=min(m,k2+batch)-k2;
for (int j=threadIdx.x;j<end_k*2;j+=blockDim.x){
buf[j]=xyz2[(i*m+k2)*2+j];
}
__syncthreads();
for (int j=threadIdx.x+blockIdx.y*blockDim.x;j<n;j+=blockDim.x*gridDim.y){
float x1=xyz[(i*n+j)*2+0];
float y1=xyz[(i*n+j)*2+1];
int best_i=0;
float best=0;
int end_ka=end_k-(end_k&2);
if (end_ka==batch){
for (int k=0;k<batch;k+=4){
{
float x2=buf[k*2+0]-x1;
float y2=buf[k*2+1]-y1;
float d=x2*x2+y2*y2;
if (k==0 || d<best){
best=d;
best_i=k+k2;
}
}
{
float x2=buf[k*2+2]-x1;
float y2=buf[k*2+3]-y1;
float d=x2*x2+y2*y2;
if (d<best){
best=d;
best_i=k+k2+1;
}
}
{
float x2=buf[k*2+4]-x1;
float y2=buf[k*2+5]-y1;
float d=x2*x2+y2*y2;
if (d<best){
best=d;
best_i=k+k2+2;
}
}
{
float x2=buf[k*2+6]-x1;
float y2=buf[k*2+7]-y1;
float d=x2*x2+y2*y2;
if (d<best){
best=d;
best_i=k+k2+3;
}
}
}
}else{
for (int k=0;k<end_ka;k+=4){
{
float x2=buf[k*2+0]-x1;
float y2=buf[k*2+1]-y1;
float d=x2*x2+y2*y2;
if (k==0 || d<best){
best=d;
best_i=k+k2;
}
}
{
float x2=buf[k*2+2]-x1;
float y2=buf[k*2+3]-y1;
float d=x2*x2+y2*y2;
if (d<best){
best=d;
best_i=k+k2+1;
}
}
{
float x2=buf[k*2+4]-x1;
float y2=buf[k*2+5]-y1;
float d=x2*x2+y2*y2;
if (d<best){
best=d;
best_i=k+k2+2;
}
}
{
float x2=buf[k*2+6]-x1;
float y2=buf[k*2+7]-y1;
float d=x2*x2+y2*y2;
if (d<best){
best=d;
best_i=k+k2+3;
}
}
}
}
for (int k=end_ka;k<end_k;k++){
float x2=buf[k*2+0]-x1;
float y2=buf[k*2+1]-y1;
float d=x2*x2+y2*y2;
if (k==0 || d<best){
best=d;
best_i=k+k2;
}
}
if (k2==0 || result[(i*n+j)]>best){
result[(i*n+j)]=best;
result_i[(i*n+j)]=best_i;
}
}
__syncthreads();
}
}
}
// int chamfer_cuda_forward(int b,int n,const float * xyz,int m,const float * xyz2,float * result,int * result_i,float * result2,int * result2_i, cudaStream_t stream){
int chamfer_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist1, at::Tensor dist2, at::Tensor idx1, at::Tensor idx2){
const auto batch_size = xyz1.size(0);
const auto n = xyz1.size(1); //num_points point cloud A
const auto m = xyz2.size(1); //num_points point cloud B
NmDistanceKernel<<<dim3(32,16,1),512>>>(batch_size, n, xyz1.data<float>(), m, xyz2.data<float>(), dist1.data<float>(), idx1.data<int>());
NmDistanceKernel<<<dim3(32,16,1),512>>>(batch_size, m, xyz2.data<float>(), n, xyz1.data<float>(), dist2.data<float>(), idx2.data<int>());
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in nnd updateOutput: %s\n", cudaGetErrorString(err));
//THError("aborting");
return 0;
}
return 1;
}
__global__ void NmDistanceGradKernel(int b,int n,const float * xyz1,int m,const float * xyz2,const float * grad_dist1,const int * idx1,float * grad_xyz1,float * grad_xyz2){
for (int i=blockIdx.x;i<b;i+=gridDim.x){
for (int j=threadIdx.x+blockIdx.y*blockDim.x;j<n;j+=blockDim.x*gridDim.y){
float x1=xyz1[(i*n+j)*2+0];
float y1=xyz1[(i*n+j)*2+1];
int j2=idx1[i*n+j];
float x2=xyz2[(i*m+j2)*2+0];
float y2=xyz2[(i*m+j2)*2+1];
float g=grad_dist1[i*n+j]*2;
atomicAdd(&(grad_xyz1[(i*n+j)*2+0]),g*(x1-x2));
atomicAdd(&(grad_xyz1[(i*n+j)*2+1]),g*(y1-y2));
atomicAdd(&(grad_xyz2[(i*m+j2)*2+0]),-(g*(x1-x2)));
atomicAdd(&(grad_xyz2[(i*m+j2)*2+1]),-(g*(y1-y2)));
}
}
}
// int chamfer_cuda_backward(int b,int n,const float * xyz1,int m,const float * xyz2,const float * grad_dist1,const int * idx1,const float * grad_dist2,const int * idx2,float * grad_xyz1,float * grad_xyz2, cudaStream_t stream){
int chamfer_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz1, at::Tensor gradxyz2, at::Tensor graddist1, at::Tensor graddist2, at::Tensor idx1, at::Tensor idx2){
// cudaMemset(grad_xyz1,0,b*n*3*4);
// cudaMemset(grad_xyz2,0,b*m*3*4);
const auto batch_size = xyz1.size(0);
const auto n = xyz1.size(1); //num_points point cloud A
const auto m = xyz2.size(1); //num_points point cloud B
NmDistanceGradKernel<<<dim3(1,16,1),256>>>(batch_size,n,xyz1.data<float>(),m,xyz2.data<float>(),graddist1.data<float>(),idx1.data<int>(),gradxyz1.data<float>(),gradxyz2.data<float>());
NmDistanceGradKernel<<<dim3(1,16,1),256>>>(batch_size,m,xyz2.data<float>(),n,xyz1.data<float>(),graddist2.data<float>(),idx2.data<int>(),gradxyz2.data<float>(),gradxyz1.data<float>());
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in nnd get grad: %s\n", cudaGetErrorString(err));
//THError("aborting");
return 0;
}
return 1;
}
|