Spaces:
Running
Running
File size: 14,224 Bytes
851751e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import glob
import os
import pickle
import numpy as np
import yaml
from PIL import Image
import xml.etree.ElementTree as ET
from lidm.data.base import DatasetBase
from .annotated_dataset import Annotated3DObjectsDataset
from .conditional_builder.utils import corners_3d_to_2d
from .helper_types import Annotation
from ..utils.lidar_utils import pcd2range, pcd2coord2d, range2pcd
# TODO add annotation categories and semantic categories
CATEGORIES = ['ignore', 'car', 'bicycle', 'motorcycle', 'truck', 'other-vehicle', 'person', 'bicyclist', 'motorcyclist',
'road', 'parking', 'sidewalk', 'other-ground', 'building', 'fence', 'vegetation', 'trunk', 'terrain',
'pole', 'traffic-sign']
CATE2LABEL = {k: v for v, k in enumerate(CATEGORIES)} # 0: invalid, 1~10: categories
LABEL2RGB = np.array([(0, 0, 0), (0, 0, 142), (119, 11, 32), (0, 0, 230), (0, 0, 70), (0, 0, 90), (220, 20, 60),
(255, 0, 0), (0, 0, 110), (128, 64, 128), (250, 170, 160), (244, 35, 232), (230, 150, 140),
(70, 70, 70), (190, 153, 153), (107, 142, 35), (0, 80, 100), (230, 150, 140), (153, 153, 153),
(220, 220, 0)])
CAMERAS = ['CAM_FRONT']
BBOX_CATS = ['car', 'people', 'cycle']
BBOX_CAT2LABEL = {'car': 0, 'truck': 0, 'bus': 0, 'caravan': 0, 'person': 1, 'rider': 2, 'motorcycle': 2, 'bicycle': 2}
# train + test
SEM_KITTI_TRAIN_SET = ['00', '01', '02', '03', '04', '05', '06', '07', '09', '10']
KITTI_TRAIN_SET = SEM_KITTI_TRAIN_SET + ['11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21']
KITTI360_TRAIN_SET = ['00', '02', '04', '05', '06', '07', '09', '10'] + ['08'] # partial test data at '02' sequence
CAM_KITTI360_TRAIN_SET = ['00', '04', '05', '06', '07', '08', '09', '10'] # cam mismatch lidar in '02'
# validation
SEM_KITTI_VAL_SET = KITTI_VAL_SET = ['08']
CAM_KITTI360_VAL_SET = KITTI360_VAL_SET = ['03']
class KITTIBase(DatasetBase):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.dataset_name = 'kitti'
self.num_sem_cats = kwargs['dataset_config'].num_sem_cats + 1
@staticmethod
def load_lidar_sweep(path):
scan = np.fromfile(path, dtype=np.float32)
scan = scan.reshape((-1, 4))
points = scan[:, 0:3] # get xyz
return points
def load_semantic_map(self, path, pcd):
raise NotImplementedError
def load_camera(self, path):
raise NotImplementedError
def __getitem__(self, idx):
example = dict()
data_path = self.data[idx]
# lidar point cloud
sweep = self.load_lidar_sweep(data_path)
if self.lidar_transform:
sweep, _ = self.lidar_transform(sweep, None)
if self.condition_key == 'segmentation':
# semantic maps
proj_range, sem_map = self.load_semantic_map(data_path, sweep)
example[self.condition_key] = sem_map
else:
proj_range, _ = pcd2range(sweep, self.img_size, self.fov, self.depth_range)
proj_range, proj_mask = self.process_scan(proj_range)
example['image'], example['mask'] = proj_range, proj_mask
if self.return_pcd:
reproj_sweep, _, _ = range2pcd(proj_range[0] * .5 + .5, self.fov, self.depth_range, self.depth_scale, self.log_scale)
example['raw'] = sweep
example['reproj'] = reproj_sweep.astype(np.float32)
# image degradation
if self.degradation_transform:
degraded_proj_range = self.degradation_transform(proj_range)
example['degraded_image'] = degraded_proj_range
# cameras
if self.condition_key == 'camera':
cameras = self.load_camera(data_path)
example[self.condition_key] = cameras
return example
class SemanticKITTIBase(KITTIBase):
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert self.condition_key in ['segmentation'] # for segmentation input only
self.label2rgb = LABEL2RGB
def prepare_data(self):
# read data paths from KITTI
for seq_id in eval('SEM_KITTI_%s_SET' % self.split.upper()):
self.data.extend(glob.glob(os.path.join(
self.data_root, f'dataset/sequences/{seq_id}/velodyne/*.bin')))
# read label mapping
data_config = yaml.safe_load(open('./data/config/semantic-kitti.yaml', 'r'))
remap_dict = data_config["learning_map"]
max_key = max(remap_dict.keys())
self.learning_map = np.zeros((max_key + 100), dtype=np.int32)
self.learning_map[list(remap_dict.keys())] = list(remap_dict.values())
def load_semantic_map(self, path, pcd):
label_path = path.replace('velodyne', 'labels').replace('.bin', '.label')
labels = np.fromfile(label_path, dtype=np.uint32)
labels = labels.reshape((-1))
labels = labels & 0xFFFF # semantic label in lower half
labels = self.learning_map[labels]
proj_range, sem_map = pcd2range(pcd, self.img_size, self.fov, self.depth_range, labels=labels)
# sem_map = np.expand_dims(sem_map, axis=0).astype(np.int64)
sem_map = sem_map.astype(np.int64)
if self.filtered_map_cats is not None:
sem_map[np.isin(sem_map, self.filtered_map_cats)] = 0 # set filtered category as noise
onehot = np.eye(self.num_sem_cats, dtype=np.float32)[sem_map].transpose(2, 0, 1)
return proj_range, onehot
class SemanticKITTITrain(SemanticKITTIBase):
def __init__(self, **kwargs):
super().__init__(data_root='./dataset/SemanticKITTI', split='train', **kwargs)
class SemanticKITTIValidation(SemanticKITTIBase):
def __init__(self, **kwargs):
super().__init__(data_root='./dataset/SemanticKITTI', split='val', **kwargs)
class KITTI360Base(KITTIBase):
def __init__(self, split_per_view=None, **kwargs):
super().__init__(**kwargs)
self.split_per_view = split_per_view
if self.condition_key == 'camera':
assert self.split_per_view is not None, 'For camera-to-lidar, need to specify split_per_view'
def prepare_data(self):
# read data paths
self.data = []
if self.condition_key == 'camera':
seq_list = eval('CAM_KITTI360_%s_SET' % self.split.upper())
else:
seq_list = eval('KITTI360_%s_SET' % self.split.upper())
for seq_id in seq_list:
self.data.extend(glob.glob(os.path.join(
self.data_root, f'data_3d_raw/2013_05_28_drive_00{seq_id}_sync/velodyne_points/data/*.bin')))
def random_drop_camera(self, camera_list):
if np.random.rand() < self.aug_config['camera_drop'] and self.split == 'train':
camera_list = [np.zeros_like(c) if i != len(camera_list) // 2 else c for i, c in enumerate(camera_list)] # keep the middle view only
return camera_list
def load_camera(self, path):
camera_path = path.replace('data_3d_raw', 'data_2d_camera').replace('velodyne_points/data', 'image_00/data_rect').replace('.bin', '.png')
camera = np.array(Image.open(camera_path)).astype(np.float32) / 255.
camera = camera.transpose(2, 0, 1)
if self.view_transform:
camera = self.view_transform(camera)
camera_list = np.split(camera, self.split_per_view, axis=2) # split into n chunks as different views
camera_list = self.random_drop_camera(camera_list)
return camera_list
class KITTI360Train(KITTI360Base):
def __init__(self, **kwargs):
super().__init__(data_root='./dataset/KITTI-360', split='train', **kwargs)
class KITTI360Validation(KITTI360Base):
def __init__(self, **kwargs):
super().__init__(data_root='./dataset/KITTI-360', split='val', **kwargs)
class AnnotatedKITTI360Base(Annotated3DObjectsDataset, KITTI360Base):
def __init__(self, **kwargs):
self.id_bbox_dict = dict()
self.id_label_dict = dict()
Annotated3DObjectsDataset.__init__(self, **kwargs)
KITTI360Base.__init__(self, **kwargs)
assert self.condition_key in ['center', 'bbox'] # for annotated images only
@staticmethod
def parseOpencvMatrix(node):
rows = int(node.find('rows').text)
cols = int(node.find('cols').text)
data = node.find('data').text.split(' ')
mat = []
for d in data:
d = d.replace('\n', '')
if len(d) < 1:
continue
mat.append(float(d))
mat = np.reshape(mat, [rows, cols])
return mat
def parseVertices(self, child):
transform = self.parseOpencvMatrix(child.find('transform'))
R = transform[:3, :3]
T = transform[:3, 3]
vertices = self.parseOpencvMatrix(child.find('vertices'))
vertices = np.matmul(R, vertices.transpose()).transpose() + T
return vertices
def parse_bbox_xml(self, path):
tree = ET.parse(path)
root = tree.getroot()
bbox_dict = dict()
label_dict = dict()
for child in root:
if child.find('transform') is None:
continue
label_name = child.find('label').text
if label_name not in BBOX_CAT2LABEL:
continue
label = BBOX_CAT2LABEL[label_name]
timestamp = int(child.find('timestamp').text)
# verts = self.parseVertices(child)
verts = self.parseOpencvMatrix(child.find('vertices'))[:8]
if timestamp in bbox_dict:
bbox_dict[timestamp].append(verts)
label_dict[timestamp].append(label)
else:
bbox_dict[timestamp] = [verts]
label_dict[timestamp] = [label]
return bbox_dict, label_dict
def prepare_data(self):
KITTI360Base.prepare_data(self)
self.data = [p for p in self.data if '2013_05_28_drive_0008_sync' not in p] # remove unlabeled sequence 08
seq_list = eval('KITTI360_%s_SET' % self.split.upper())
for seq_id in seq_list:
if seq_id != '08':
xml_path = os.path.join(self.data_root, f'data_3d_bboxes/train/2013_05_28_drive_00{seq_id}_sync.xml')
bbox_dict, label_dict = self.parse_bbox_xml(xml_path)
self.id_bbox_dict[seq_id] = bbox_dict
self.id_label_dict[seq_id] = label_dict
def load_annotation(self, path):
seq_id = path.split('/')[-4].split('_')[-2][-2:]
timestamp = int(path.split('/')[-1].replace('.bin', ''))
verts_list = self.id_bbox_dict[seq_id][timestamp]
label_list = self.id_label_dict[seq_id][timestamp]
if self.condition_key == 'bbox':
points = np.stack(verts_list)
elif self.condition_key == 'center':
points = (verts_list[0] + verts_list[6]) / 2.
else:
raise NotImplementedError
labels = np.array([label_list])
if self.anno_transform:
points, labels = self.anno_transform(points, labels)
return points, labels
def __getitem__(self, idx):
example = dict()
data_path = self.data[idx]
# lidar point cloud
sweep = self.load_lidar_sweep(data_path)
# annotations
bbox_points, bbox_labels = self.load_annotation(data_path)
if self.lidar_transform:
sweep, bbox_points = self.lidar_transform(sweep, bbox_points)
# point cloud -> range
proj_range, _ = pcd2range(sweep, self.img_size, self.fov, self.depth_range)
proj_range, proj_mask = self.process_scan(proj_range)
example['image'], example['mask'] = proj_range, proj_mask
if self.return_pcd:
example['reproj'] = sweep
# annotation -> range
# NOTE: do not need to transform bbox points along with lidar, since their coordinates are based on range-image space instead of 3D space
proj_bbox_points, proj_bbox_labels = pcd2coord2d(bbox_points, self.fov, self.depth_range, labels=bbox_labels)
builder = self.conditional_builders[self.condition_key]
if self.condition_key == 'bbox':
proj_bbox_points = corners_3d_to_2d(proj_bbox_points)
annotations = [Annotation(bbox=bbox.flatten(), category_id=label) for bbox, label in
zip(proj_bbox_points, proj_bbox_labels)]
else:
annotations = [Annotation(center=center, category_id=label) for center, label in
zip(proj_bbox_points, proj_bbox_labels)]
example[self.condition_key] = builder.build(annotations)
return example
class AnnotatedKITTI360Train(AnnotatedKITTI360Base):
def __init__(self, **kwargs):
super().__init__(data_root='./dataset/KITTI-360', split='train', cats=BBOX_CATS, **kwargs)
class AnnotatedKITTI360Validation(AnnotatedKITTI360Base):
def __init__(self, **kwargs):
super().__init__(data_root='./dataset/KITTI-360', split='train', cats=BBOX_CATS, **kwargs)
class KITTIImageBase(KITTIBase):
"""
Range ImageSet only combining KITTI-360 and SemanticKITTI
#Samples (Training): 98014, #Samples (Val): 3511
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
assert self.condition_key in [None, 'image'] # for image input only
def prepare_data(self):
# read data paths from KITTI-360
self.data = []
for seq_id in eval('KITTI360_%s_SET' % self.split.upper()):
self.data.extend(glob.glob(os.path.join(
self.data_root, f'KITTI-360/data_3d_raw/2013_05_28_drive_00{seq_id}_sync/velodyne_points/data/*.bin')))
# read data paths from KITTI
for seq_id in eval('KITTI_%s_SET' % self.split.upper()):
self.data.extend(glob.glob(os.path.join(
self.data_root, f'SemanticKITTI/dataset/sequences/{seq_id}/velodyne/*.bin')))
class KITTIImageTrain(KITTIImageBase):
def __init__(self, **kwargs):
super().__init__(data_root='./dataset', split='train', **kwargs)
class KITTIImageValidation(KITTIImageBase):
def __init__(self, **kwargs):
super().__init__(data_root='./dataset', split='val', **kwargs)
|