File size: 14,224 Bytes
851751e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
import glob
import os
import pickle
import numpy as np
import yaml
from PIL import Image
import xml.etree.ElementTree as ET

from lidm.data.base import DatasetBase
from .annotated_dataset import Annotated3DObjectsDataset
from .conditional_builder.utils import corners_3d_to_2d
from .helper_types import Annotation
from ..utils.lidar_utils import pcd2range, pcd2coord2d, range2pcd

# TODO add annotation categories and semantic categories
CATEGORIES = ['ignore', 'car', 'bicycle', 'motorcycle', 'truck', 'other-vehicle', 'person', 'bicyclist', 'motorcyclist',
              'road', 'parking', 'sidewalk', 'other-ground', 'building', 'fence', 'vegetation', 'trunk', 'terrain',
              'pole', 'traffic-sign']
CATE2LABEL = {k: v for v, k in enumerate(CATEGORIES)}  # 0: invalid, 1~10: categories
LABEL2RGB = np.array([(0, 0, 0), (0, 0, 142), (119, 11, 32), (0, 0, 230), (0, 0, 70), (0, 0, 90), (220, 20, 60),
                      (255, 0, 0), (0, 0, 110), (128, 64, 128), (250, 170, 160), (244, 35, 232), (230, 150, 140),
                      (70, 70, 70), (190, 153, 153), (107, 142, 35), (0, 80, 100), (230, 150, 140), (153, 153, 153),
                      (220, 220, 0)])
CAMERAS = ['CAM_FRONT']
BBOX_CATS = ['car', 'people', 'cycle']
BBOX_CAT2LABEL = {'car': 0, 'truck': 0, 'bus': 0, 'caravan': 0, 'person': 1, 'rider': 2, 'motorcycle': 2, 'bicycle': 2}

# train + test
SEM_KITTI_TRAIN_SET = ['00', '01', '02', '03', '04', '05', '06', '07', '09', '10']
KITTI_TRAIN_SET = SEM_KITTI_TRAIN_SET + ['11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21']
KITTI360_TRAIN_SET = ['00', '02', '04', '05', '06', '07', '09', '10'] + ['08']  # partial test data at '02' sequence
CAM_KITTI360_TRAIN_SET = ['00', '04', '05', '06', '07', '08', '09', '10']  # cam mismatch lidar in '02'

# validation
SEM_KITTI_VAL_SET = KITTI_VAL_SET = ['08']
CAM_KITTI360_VAL_SET = KITTI360_VAL_SET = ['03']


class KITTIBase(DatasetBase):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.dataset_name = 'kitti'
        self.num_sem_cats = kwargs['dataset_config'].num_sem_cats + 1

    @staticmethod
    def load_lidar_sweep(path):
        scan = np.fromfile(path, dtype=np.float32)
        scan = scan.reshape((-1, 4))
        points = scan[:, 0:3]  # get xyz
        return points

    def load_semantic_map(self, path, pcd):
        raise NotImplementedError

    def load_camera(self, path):
        raise NotImplementedError

    def __getitem__(self, idx):
        example = dict()
        data_path = self.data[idx]
        # lidar point cloud
        sweep = self.load_lidar_sweep(data_path)

        if self.lidar_transform:
            sweep, _ = self.lidar_transform(sweep, None)

        if self.condition_key == 'segmentation':
            # semantic maps
            proj_range, sem_map = self.load_semantic_map(data_path, sweep)
            example[self.condition_key] = sem_map
        else:
            proj_range, _ = pcd2range(sweep, self.img_size, self.fov, self.depth_range)
        proj_range, proj_mask = self.process_scan(proj_range)
        example['image'], example['mask'] = proj_range, proj_mask
        if self.return_pcd:
            reproj_sweep, _, _ = range2pcd(proj_range[0] * .5 + .5, self.fov, self.depth_range, self.depth_scale, self.log_scale)
            example['raw'] = sweep
            example['reproj'] = reproj_sweep.astype(np.float32)

        # image degradation
        if self.degradation_transform:
            degraded_proj_range = self.degradation_transform(proj_range)
            example['degraded_image'] = degraded_proj_range

        # cameras
        if self.condition_key == 'camera':
            cameras = self.load_camera(data_path)
            example[self.condition_key] = cameras

        return example


class SemanticKITTIBase(KITTIBase):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        assert self.condition_key in ['segmentation']  # for segmentation input only
        self.label2rgb = LABEL2RGB

    def prepare_data(self):
        # read data paths from KITTI
        for seq_id in eval('SEM_KITTI_%s_SET' % self.split.upper()):
            self.data.extend(glob.glob(os.path.join(
                self.data_root, f'dataset/sequences/{seq_id}/velodyne/*.bin')))
        # read label mapping
        data_config = yaml.safe_load(open('./data/config/semantic-kitti.yaml', 'r'))
        remap_dict = data_config["learning_map"]
        max_key = max(remap_dict.keys())
        self.learning_map = np.zeros((max_key + 100), dtype=np.int32)
        self.learning_map[list(remap_dict.keys())] = list(remap_dict.values())

    def load_semantic_map(self, path, pcd):
        label_path = path.replace('velodyne', 'labels').replace('.bin', '.label')
        labels = np.fromfile(label_path, dtype=np.uint32)
        labels = labels.reshape((-1))
        labels = labels & 0xFFFF  # semantic label in lower half
        labels = self.learning_map[labels]

        proj_range, sem_map = pcd2range(pcd, self.img_size, self.fov, self.depth_range, labels=labels)
        # sem_map = np.expand_dims(sem_map, axis=0).astype(np.int64)
        sem_map = sem_map.astype(np.int64)
        if self.filtered_map_cats is not None:
            sem_map[np.isin(sem_map, self.filtered_map_cats)] = 0  # set filtered category as noise
        onehot = np.eye(self.num_sem_cats, dtype=np.float32)[sem_map].transpose(2, 0, 1)
        return proj_range, onehot


class SemanticKITTITrain(SemanticKITTIBase):
    def __init__(self, **kwargs):
        super().__init__(data_root='./dataset/SemanticKITTI', split='train', **kwargs)


class SemanticKITTIValidation(SemanticKITTIBase):
    def __init__(self, **kwargs):
        super().__init__(data_root='./dataset/SemanticKITTI', split='val', **kwargs)


class KITTI360Base(KITTIBase):
    def __init__(self, split_per_view=None, **kwargs):
        super().__init__(**kwargs)
        self.split_per_view = split_per_view
        if self.condition_key == 'camera':
            assert self.split_per_view is not None, 'For camera-to-lidar, need to specify split_per_view'

    def prepare_data(self):
        # read data paths
        self.data = []
        if self.condition_key == 'camera':
            seq_list = eval('CAM_KITTI360_%s_SET' % self.split.upper())
        else:
            seq_list = eval('KITTI360_%s_SET' % self.split.upper())
        for seq_id in seq_list:
            self.data.extend(glob.glob(os.path.join(
                self.data_root, f'data_3d_raw/2013_05_28_drive_00{seq_id}_sync/velodyne_points/data/*.bin')))

    def random_drop_camera(self, camera_list):
        if np.random.rand() < self.aug_config['camera_drop'] and self.split == 'train':
            camera_list = [np.zeros_like(c) if i != len(camera_list) // 2 else c for i, c in enumerate(camera_list)]  # keep the middle view only
        return camera_list

    def load_camera(self, path):
        camera_path = path.replace('data_3d_raw', 'data_2d_camera').replace('velodyne_points/data', 'image_00/data_rect').replace('.bin', '.png')
        camera = np.array(Image.open(camera_path)).astype(np.float32) / 255.
        camera = camera.transpose(2, 0, 1)
        if self.view_transform:
            camera = self.view_transform(camera)
        camera_list = np.split(camera, self.split_per_view, axis=2)  # split into n chunks as different views
        camera_list = self.random_drop_camera(camera_list)
        return camera_list


class KITTI360Train(KITTI360Base):
    def __init__(self, **kwargs):
        super().__init__(data_root='./dataset/KITTI-360', split='train', **kwargs)


class KITTI360Validation(KITTI360Base):
    def __init__(self, **kwargs):
        super().__init__(data_root='./dataset/KITTI-360', split='val', **kwargs)


class AnnotatedKITTI360Base(Annotated3DObjectsDataset, KITTI360Base):
    def __init__(self, **kwargs):
        self.id_bbox_dict = dict()
        self.id_label_dict = dict()

        Annotated3DObjectsDataset.__init__(self, **kwargs)
        KITTI360Base.__init__(self, **kwargs)
        assert self.condition_key in ['center', 'bbox']  # for annotated images only

    @staticmethod
    def parseOpencvMatrix(node):
        rows = int(node.find('rows').text)
        cols = int(node.find('cols').text)
        data = node.find('data').text.split(' ')

        mat = []
        for d in data:
            d = d.replace('\n', '')
            if len(d) < 1:
                continue
            mat.append(float(d))
        mat = np.reshape(mat, [rows, cols])
        return mat

    def parseVertices(self, child):
        transform = self.parseOpencvMatrix(child.find('transform'))
        R = transform[:3, :3]
        T = transform[:3, 3]
        vertices = self.parseOpencvMatrix(child.find('vertices'))
        vertices = np.matmul(R, vertices.transpose()).transpose() + T
        return vertices

    def parse_bbox_xml(self, path):
        tree = ET.parse(path)
        root = tree.getroot()

        bbox_dict = dict()
        label_dict = dict()
        for child in root:
            if child.find('transform') is None:
                continue

            label_name = child.find('label').text
            if label_name not in BBOX_CAT2LABEL:
                continue

            label = BBOX_CAT2LABEL[label_name]
            timestamp = int(child.find('timestamp').text)
            # verts = self.parseVertices(child)
            verts = self.parseOpencvMatrix(child.find('vertices'))[:8]
            if timestamp in bbox_dict:
                bbox_dict[timestamp].append(verts)
                label_dict[timestamp].append(label)
            else:
                bbox_dict[timestamp] = [verts]
                label_dict[timestamp] = [label]
        return bbox_dict, label_dict

    def prepare_data(self):
        KITTI360Base.prepare_data(self)

        self.data = [p for p in self.data if '2013_05_28_drive_0008_sync' not in p]  # remove unlabeled sequence 08
        seq_list = eval('KITTI360_%s_SET' % self.split.upper())
        for seq_id in seq_list:
            if seq_id != '08':
                xml_path = os.path.join(self.data_root, f'data_3d_bboxes/train/2013_05_28_drive_00{seq_id}_sync.xml')
                bbox_dict, label_dict = self.parse_bbox_xml(xml_path)
                self.id_bbox_dict[seq_id] = bbox_dict
                self.id_label_dict[seq_id] = label_dict

    def load_annotation(self, path):
        seq_id = path.split('/')[-4].split('_')[-2][-2:]
        timestamp = int(path.split('/')[-1].replace('.bin', ''))
        verts_list = self.id_bbox_dict[seq_id][timestamp]
        label_list = self.id_label_dict[seq_id][timestamp]

        if self.condition_key == 'bbox':
            points = np.stack(verts_list)
        elif self.condition_key == 'center':
            points = (verts_list[0] + verts_list[6]) / 2.
        else:
            raise NotImplementedError
        labels = np.array([label_list])
        if self.anno_transform:
            points, labels = self.anno_transform(points, labels)
        return points, labels

    def __getitem__(self, idx):
        example = dict()
        data_path = self.data[idx]

        # lidar point cloud
        sweep = self.load_lidar_sweep(data_path)

        # annotations
        bbox_points, bbox_labels = self.load_annotation(data_path)

        if self.lidar_transform:
            sweep, bbox_points = self.lidar_transform(sweep, bbox_points)

        # point cloud -> range
        proj_range, _ = pcd2range(sweep, self.img_size, self.fov, self.depth_range)
        proj_range, proj_mask = self.process_scan(proj_range)
        example['image'], example['mask'] = proj_range, proj_mask
        if self.return_pcd:
            example['reproj'] = sweep

        # annotation -> range
        # NOTE: do not need to transform bbox points along with lidar, since their coordinates are based on range-image space instead of 3D space
        proj_bbox_points, proj_bbox_labels = pcd2coord2d(bbox_points, self.fov, self.depth_range, labels=bbox_labels)
        builder = self.conditional_builders[self.condition_key]
        if self.condition_key == 'bbox':
            proj_bbox_points = corners_3d_to_2d(proj_bbox_points)
            annotations = [Annotation(bbox=bbox.flatten(), category_id=label) for bbox, label in
                           zip(proj_bbox_points, proj_bbox_labels)]
        else:
            annotations = [Annotation(center=center, category_id=label) for center, label in
                           zip(proj_bbox_points, proj_bbox_labels)]
        example[self.condition_key] = builder.build(annotations)

        return example


class AnnotatedKITTI360Train(AnnotatedKITTI360Base):
    def __init__(self, **kwargs):
        super().__init__(data_root='./dataset/KITTI-360', split='train', cats=BBOX_CATS, **kwargs)


class AnnotatedKITTI360Validation(AnnotatedKITTI360Base):
    def __init__(self, **kwargs):
        super().__init__(data_root='./dataset/KITTI-360', split='train', cats=BBOX_CATS, **kwargs)


class KITTIImageBase(KITTIBase):
    """
    Range ImageSet only combining KITTI-360 and SemanticKITTI

    #Samples (Training): 98014, #Samples (Val): 3511

    """
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        assert self.condition_key in [None, 'image']  # for image input only

    def prepare_data(self):
        # read data paths from KITTI-360
        self.data = []
        for seq_id in eval('KITTI360_%s_SET' % self.split.upper()):
            self.data.extend(glob.glob(os.path.join(
                self.data_root, f'KITTI-360/data_3d_raw/2013_05_28_drive_00{seq_id}_sync/velodyne_points/data/*.bin')))

        # read data paths from KITTI
        for seq_id in eval('KITTI_%s_SET' % self.split.upper()):
            self.data.extend(glob.glob(os.path.join(
                self.data_root, f'SemanticKITTI/dataset/sequences/{seq_id}/velodyne/*.bin')))


class KITTIImageTrain(KITTIImageBase):
    def __init__(self, **kwargs):
        super().__init__(data_root='./dataset', split='train', **kwargs)


class KITTIImageValidation(KITTIImageBase):
    def __init__(self, **kwargs):
        super().__init__(data_root='./dataset', split='val', **kwargs)