Hancy's picture
init
851751e
import torch
from torch import nn
from . import weights_init, l1, l2, hinge_d_loss, vanilla_d_loss, measure_perplexity, square_dist_loss
from .geometric import GeoConverter
from .discriminator import NLayerDiscriminator, LiDARNLayerDiscriminator, LiDARNLayerDiscriminatorV2
from .perceptual import PerceptualLoss
VERSION2DISC = {'v0': NLayerDiscriminator, 'v1': LiDARNLayerDiscriminator, 'v2': LiDARNLayerDiscriminatorV2}
class VQGeoLPIPSWithDiscriminator(nn.Module):
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
disc_num_layers=3, disc_in_channels=3, disc_out_channels=1, disc_factor=1.0, disc_weight=1.0,
mask_factor=0.0, use_actnorm=False, disc_conditional=False,
disc_ndf=64, disc_loss="hinge", n_classes=None, pixel_loss="l1", disc_version='v1',
geo_factor=1.0, curve_length=4, perceptual_factor=1.0, perceptual_type='rangenet_final',
dataset_config=dict()):
super().__init__()
assert disc_loss in ["hinge", "vanilla"]
assert pixel_loss in ["l1", "l2"]
self.codebook_weight = codebook_weight
self.pixel_weight = pixelloss_weight
self.mask_factor = mask_factor
self.geo_factor = geo_factor
# scale of reconstruction loss
self.rec_scale = 1
if mask_factor > 0:
self.rec_scale += 1.
if geo_factor > 0:
self.rec_scale += 1.
if perceptual_factor > 0:
self.rec_scale += 1.
if pixel_loss == "l1":
self.pixel_loss = l1
else:
self.pixel_loss = l2
self.perceptual_factor = perceptual_factor
if perceptual_factor > 0.:
print(f"{self.__class__.__name__}: Running with LPIPS.")
self.perceptual_loss = PerceptualLoss(perceptual_type, dataset_config.depth_scale,
dataset_config.log_scale).eval()
disc_cls = VERSION2DISC[disc_version]
self.discriminator = disc_cls(input_nc=disc_in_channels,
output_nc=disc_out_channels,
n_layers=disc_num_layers,
use_actnorm=use_actnorm,
ndf=disc_ndf).apply(weights_init)
self.discriminator_iter_start = disc_start
if disc_loss == "hinge":
self.disc_loss = hinge_d_loss
elif disc_loss == "vanilla":
self.disc_loss = vanilla_d_loss
else:
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
print(f"VQGeoLPIPSWithDiscriminator running with {disc_loss} loss.")
self.disc_factor = disc_factor
self.discriminator_weight = disc_weight
self.disc_conditional = disc_conditional
self.n_classes = n_classes
self.geometry_converter = GeoConverter(curve_length, False, dataset_config) # force converting xyz output
self.geo_loss = square_dist_loss
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
if last_layer is not None:
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
else:
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
d_weight = d_weight * self.discriminator_weight
return d_weight
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
global_step, last_layer=None, cond=None, split="train", predicted_indices=None, masks=None):
input_coord = self.geometry_converter(inputs)
rec_coord = self.geometry_converter(reconstructions[:, 0:1].contiguous())
############# Reconstruction #############
# pixel reconstruction loss
if self.mask_factor > 0 and masks is not None:
pixel_rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions[:, 0:1].contiguous())
mask_rec_loss = self.pixel_loss(masks.contiguous(), reconstructions[:, 1:2].contiguous()) * self.mask_factor
else:
pixel_rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
mask_rec_loss = torch.tensor(0.0)
# geometry reconstruction loss (bev)
if self.geo_factor > 0:
geo_rec_loss = self.geo_loss(input_coord[:, :2], rec_coord[:, :2]) * self.geo_factor
else:
geo_rec_loss = torch.tensor(0.0)
# perceptual loss
if self.perceptual_factor > 0:
perceptual_loss = self.perceptual_loss((inputs.contiguous(), input_coord),
(reconstructions[:, 0:1].contiguous(), rec_coord)) * self.perceptual_factor
else:
perceptual_loss = torch.tensor(0.0)
# overall reconstruction loss
rec_loss = (pixel_rec_loss + mask_rec_loss + geo_rec_loss + perceptual_loss) / self.rec_scale
nll_loss = rec_loss
nll_loss = torch.mean(nll_loss)
############# GAN #############
disc_factor = 0. if global_step > self.discriminator_iter_start else self.disc_factor
# update generator (input: img, mask, coord, [cond])
if optimizer_idx == 0:
disc_recons = reconstructions.contiguous()
if self.geo_factor > 0:
disc_recons = torch.cat((disc_recons, rec_coord[:, :2].contiguous()), dim=1)
if cond is not None and self.disc_conditional:
disc_recons = torch.cat((disc_recons, cond), dim=1)
logits_fake = self.discriminator(disc_recons)
# adversarial loss
g_loss = -torch.mean(logits_fake)
try:
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
except RuntimeError:
assert not self.training
d_weight = torch.tensor(0.0)
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
"{}/rec_loss".format(split): rec_loss.detach().mean(),
"{}/pix_rec_loss".format(split): pixel_rec_loss.detach().mean(),
"{}/geo_rec_loss".format(split): geo_rec_loss.detach().mean(),
"{}/mask_rec_loss".format(split): mask_rec_loss.detach().mean(),
"{}/perceptual_loss".format(split): perceptual_loss.detach().mean(),
"{}/d_weight".format(split): d_weight.detach(),
"{}/disc_factor".format(split): torch.tensor(disc_factor),
"{}/g_loss".format(split): g_loss.detach().mean()}
if predicted_indices is not None:
assert self.n_classes is not None
with torch.no_grad():
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
log[f"{split}/perplexity"] = perplexity
log[f"{split}/cluster_usage"] = cluster_usage
return loss, log
# update discriminator (input: img, mask, coord, [cond])
if optimizer_idx == 1:
disc_inputs, disc_recons = inputs.contiguous().detach(), reconstructions.contiguous().detach()
if self.mask_factor > 0 and masks is not None:
disc_inputs = torch.cat((disc_inputs, masks.contiguous().detach()), dim=1)
if self.geo_factor > 0:
disc_inputs = torch.cat((disc_inputs, input_coord[:, :2].contiguous()), dim=1)
disc_recons = torch.cat((disc_recons, rec_coord[:, :2].contiguous()), dim=1)
if cond is not None:
disc_inputs = torch.cat((disc_inputs, cond), dim=1)
disc_recons = torch.cat((disc_recons, cond), dim=1)
logits_real = self.discriminator(disc_inputs)
logits_fake = self.discriminator(disc_recons)
# gan loss
d_loss = self.disc_loss(logits_real, logits_fake) * disc_factor
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
"{}/logits_real".format(split): logits_real.detach().mean(),
"{}/logits_fake".format(split): logits_fake.detach().mean()}
return d_loss, log