Spaces:
Running
Running
import torch | |
from torch import nn | |
from . import weights_init, l1, l2, hinge_d_loss, vanilla_d_loss, measure_perplexity, square_dist_loss | |
from .geometric import GeoConverter | |
from .discriminator import NLayerDiscriminator, LiDARNLayerDiscriminator, LiDARNLayerDiscriminatorV2 | |
from .perceptual import PerceptualLoss | |
VERSION2DISC = {'v0': NLayerDiscriminator, 'v1': LiDARNLayerDiscriminator, 'v2': LiDARNLayerDiscriminatorV2} | |
class VQGeoLPIPSWithDiscriminator(nn.Module): | |
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0, | |
disc_num_layers=3, disc_in_channels=3, disc_out_channels=1, disc_factor=1.0, disc_weight=1.0, | |
mask_factor=0.0, use_actnorm=False, disc_conditional=False, | |
disc_ndf=64, disc_loss="hinge", n_classes=None, pixel_loss="l1", disc_version='v1', | |
geo_factor=1.0, curve_length=4, perceptual_factor=1.0, perceptual_type='rangenet_final', | |
dataset_config=dict()): | |
super().__init__() | |
assert disc_loss in ["hinge", "vanilla"] | |
assert pixel_loss in ["l1", "l2"] | |
self.codebook_weight = codebook_weight | |
self.pixel_weight = pixelloss_weight | |
self.mask_factor = mask_factor | |
self.geo_factor = geo_factor | |
# scale of reconstruction loss | |
self.rec_scale = 1 | |
if mask_factor > 0: | |
self.rec_scale += 1. | |
if geo_factor > 0: | |
self.rec_scale += 1. | |
if perceptual_factor > 0: | |
self.rec_scale += 1. | |
if pixel_loss == "l1": | |
self.pixel_loss = l1 | |
else: | |
self.pixel_loss = l2 | |
self.perceptual_factor = perceptual_factor | |
if perceptual_factor > 0.: | |
print(f"{self.__class__.__name__}: Running with LPIPS.") | |
self.perceptual_loss = PerceptualLoss(perceptual_type, dataset_config.depth_scale, | |
dataset_config.log_scale).eval() | |
disc_cls = VERSION2DISC[disc_version] | |
self.discriminator = disc_cls(input_nc=disc_in_channels, | |
output_nc=disc_out_channels, | |
n_layers=disc_num_layers, | |
use_actnorm=use_actnorm, | |
ndf=disc_ndf).apply(weights_init) | |
self.discriminator_iter_start = disc_start | |
if disc_loss == "hinge": | |
self.disc_loss = hinge_d_loss | |
elif disc_loss == "vanilla": | |
self.disc_loss = vanilla_d_loss | |
else: | |
raise ValueError(f"Unknown GAN loss '{disc_loss}'.") | |
print(f"VQGeoLPIPSWithDiscriminator running with {disc_loss} loss.") | |
self.disc_factor = disc_factor | |
self.discriminator_weight = disc_weight | |
self.disc_conditional = disc_conditional | |
self.n_classes = n_classes | |
self.geometry_converter = GeoConverter(curve_length, False, dataset_config) # force converting xyz output | |
self.geo_loss = square_dist_loss | |
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None): | |
if last_layer is not None: | |
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0] | |
else: | |
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0] | |
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0] | |
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4) | |
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach() | |
d_weight = d_weight * self.discriminator_weight | |
return d_weight | |
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx, | |
global_step, last_layer=None, cond=None, split="train", predicted_indices=None, masks=None): | |
input_coord = self.geometry_converter(inputs) | |
rec_coord = self.geometry_converter(reconstructions[:, 0:1].contiguous()) | |
############# Reconstruction ############# | |
# pixel reconstruction loss | |
if self.mask_factor > 0 and masks is not None: | |
pixel_rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions[:, 0:1].contiguous()) | |
mask_rec_loss = self.pixel_loss(masks.contiguous(), reconstructions[:, 1:2].contiguous()) * self.mask_factor | |
else: | |
pixel_rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous()) | |
mask_rec_loss = torch.tensor(0.0) | |
# geometry reconstruction loss (bev) | |
if self.geo_factor > 0: | |
geo_rec_loss = self.geo_loss(input_coord[:, :2], rec_coord[:, :2]) * self.geo_factor | |
else: | |
geo_rec_loss = torch.tensor(0.0) | |
# perceptual loss | |
if self.perceptual_factor > 0: | |
perceptual_loss = self.perceptual_loss((inputs.contiguous(), input_coord), | |
(reconstructions[:, 0:1].contiguous(), rec_coord)) * self.perceptual_factor | |
else: | |
perceptual_loss = torch.tensor(0.0) | |
# overall reconstruction loss | |
rec_loss = (pixel_rec_loss + mask_rec_loss + geo_rec_loss + perceptual_loss) / self.rec_scale | |
nll_loss = rec_loss | |
nll_loss = torch.mean(nll_loss) | |
############# GAN ############# | |
disc_factor = 0. if global_step > self.discriminator_iter_start else self.disc_factor | |
# update generator (input: img, mask, coord, [cond]) | |
if optimizer_idx == 0: | |
disc_recons = reconstructions.contiguous() | |
if self.geo_factor > 0: | |
disc_recons = torch.cat((disc_recons, rec_coord[:, :2].contiguous()), dim=1) | |
if cond is not None and self.disc_conditional: | |
disc_recons = torch.cat((disc_recons, cond), dim=1) | |
logits_fake = self.discriminator(disc_recons) | |
# adversarial loss | |
g_loss = -torch.mean(logits_fake) | |
try: | |
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer) | |
except RuntimeError: | |
assert not self.training | |
d_weight = torch.tensor(0.0) | |
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean() | |
log = {"{}/total_loss".format(split): loss.clone().detach().mean(), | |
"{}/quant_loss".format(split): codebook_loss.detach().mean(), | |
"{}/rec_loss".format(split): rec_loss.detach().mean(), | |
"{}/pix_rec_loss".format(split): pixel_rec_loss.detach().mean(), | |
"{}/geo_rec_loss".format(split): geo_rec_loss.detach().mean(), | |
"{}/mask_rec_loss".format(split): mask_rec_loss.detach().mean(), | |
"{}/perceptual_loss".format(split): perceptual_loss.detach().mean(), | |
"{}/d_weight".format(split): d_weight.detach(), | |
"{}/disc_factor".format(split): torch.tensor(disc_factor), | |
"{}/g_loss".format(split): g_loss.detach().mean()} | |
if predicted_indices is not None: | |
assert self.n_classes is not None | |
with torch.no_grad(): | |
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes) | |
log[f"{split}/perplexity"] = perplexity | |
log[f"{split}/cluster_usage"] = cluster_usage | |
return loss, log | |
# update discriminator (input: img, mask, coord, [cond]) | |
if optimizer_idx == 1: | |
disc_inputs, disc_recons = inputs.contiguous().detach(), reconstructions.contiguous().detach() | |
if self.mask_factor > 0 and masks is not None: | |
disc_inputs = torch.cat((disc_inputs, masks.contiguous().detach()), dim=1) | |
if self.geo_factor > 0: | |
disc_inputs = torch.cat((disc_inputs, input_coord[:, :2].contiguous()), dim=1) | |
disc_recons = torch.cat((disc_recons, rec_coord[:, :2].contiguous()), dim=1) | |
if cond is not None: | |
disc_inputs = torch.cat((disc_inputs, cond), dim=1) | |
disc_recons = torch.cat((disc_recons, cond), dim=1) | |
logits_real = self.discriminator(disc_inputs) | |
logits_fake = self.discriminator(disc_recons) | |
# gan loss | |
d_loss = self.disc_loss(logits_real, logits_fake) * disc_factor | |
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(), | |
"{}/logits_real".format(split): logits_real.detach().mean(), | |
"{}/logits_fake".format(split): logits_fake.detach().mean()} | |
return d_loss, log | |