diff --git a/README.md b/README.md
index 8fb44f7c6c6045c9106e20accfa1d3e6df0dc4f0..4e741fb61c446b6e724d747412c633b173e1a1c6 100644
--- a/README.md
+++ b/README.md
@@ -1,8 +1,8 @@
 ---
 title: LiDAR Diffusion
-emoji: 📚
-colorFrom: blue
-colorTo: green
+emoji: 🚙🛞🚨
+colorFrom: green
+colorTo: indigo
 sdk: gradio
 sdk_version: 4.26.0
 app_file: app.py
diff --git a/app.py b/app.py
index d860a45d46dcefd21abcdb62e4f2b5237a938485..3eb1fe7039b19818959a83ab682e32b92e0d730c 100644
--- a/app.py
+++ b/app.py
@@ -1,9 +1,81 @@
 import gradio as gr
+import spaces
+import tempfile
+import os
+import torch
+import numpy as np
+from matplotlib.colors import LinearSegmentedColormap
 
+from app_config import CSS, TITLE, DESCRIPTION, DEVICE
+import sample_cond
 
-def greet(name):
-    return "Hello " + name + "!!"
+model = sample_cond.load_model()
 
 
-iface = gr.Interface(fn=greet, inputs="text", outputs="text")
-iface.launch()
+def create_custom_colormap():
+    colors = [(0, 1, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1), (1, 1, 0)]
+    positions = [0, 0.38, 0.6, 0.7, 1]
+
+    custom_cmap = LinearSegmentedColormap.from_list('custom_colormap', list(zip(positions, colors)), N=256)
+    return custom_cmap
+
+
+def colorize_depth(depth, log_scale):
+    if log_scale:
+        depth = ((np.log2((depth / 255.) * 56. + 1) / 5.84) * 255.).astype(np.uint8)
+    mask = depth == 0
+    colormap = create_custom_colormap()
+    rgb = colormap(depth)[:, :, :3]
+    rgb[mask] = 0.
+    return rgb
+
+
+@spaces.GPU
+@torch.no_grad()
+def generate_lidar(model, cond):
+    img, pcd = sample_cond.sample(model, cond)
+    return img, pcd
+
+
+def load_camera(image):
+    split_per_view = 4
+    camera = np.array(image).astype(np.float32) / 255.
+    camera = camera.transpose(2, 0, 1)
+    camera_list = np.split(camera, split_per_view, axis=2)  # split into n chunks as different views
+    camera_cond = torch.from_numpy(np.stack(camera_list, axis=0)).unsqueeze(0).to(DEVICE)
+    return camera_cond
+
+
+with gr.Blocks(css=CSS) as demo:
+    gr.Markdown(TITLE)
+    gr.Markdown(DESCRIPTION)
+    gr.Markdown("### Camera-to-LiDAR Demo")
+    # gr.Markdown("You can slide the output to compare the depth prediction with input image")
+
+    with gr.Row():
+        input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
+        output_image = gr.Image(label="Range Map", elem_id='img-display-output')
+    raw_file = gr.File(label="Point Cloud (.txt file). Can be viewed through Meshlab")
+    submit = gr.Button("Submit")
+
+    def on_submit(image):
+        cond = load_camera(image)
+        img, pcd = generate_lidar(model, cond)
+
+        tmp = tempfile.NamedTemporaryFile(suffix='.txt', delete=False)
+        pcd.save(tmp.name)
+
+        rgb_img = colorize_depth(img, log_scale=True)
+
+        return [rgb_img, tmp.name]
+
+    submit.click(on_submit, inputs=[input_image], outputs=[output_image, raw_file])
+
+    example_files = sorted(os.listdir('cam_examples'))
+    example_files = [os.path.join('cam_examples', filename) for filename in example_files]
+    examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[output_image, raw_file],
+                           fn=on_submit, cache_examples=True)
+
+
+if __name__ == '__main__':
+    demo.queue().launch()
diff --git a/app_config.py b/app_config.py
new file mode 100644
index 0000000000000000000000000000000000000000..505160872e64d4fbdab7e564d8388a0afe647eed
--- /dev/null
+++ b/app_config.py
@@ -0,0 +1,17 @@
+import torch
+
+CSS = """
+#img-display-container {
+    max-height: 100vh;
+    }
+#img-display-input {
+    max-height: 80vh;
+    }
+#img-display-output {
+    max-height: 80vh;
+    }
+"""
+DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
+TITLE = "# LiDAR Diffusion"
+DESCRIPTION = """Official demo for **LiDAR Diffusion: Towards Realistic Scene Generation with LiDAR Diffusion Models**.
+Please refer to our [paper](https://arxiv.org/abs/2404.00815), [project page](https://lidar-diffusion.github.io/), or [github](https://github.com/hancyran/LiDAR-Diffusion) for more details."""
diff --git a/cam_examples/conditioning_000011.png b/cam_examples/conditioning_000011.png
new file mode 100644
index 0000000000000000000000000000000000000000..f8e13c1e65b515ee85ababb900fcb5316ac37086
Binary files /dev/null and b/cam_examples/conditioning_000011.png differ
diff --git a/cam_examples/conditioning_000153.png b/cam_examples/conditioning_000153.png
new file mode 100644
index 0000000000000000000000000000000000000000..81f0c60659b3f31b2c01cfc750780c72cd344f9f
Binary files /dev/null and b/cam_examples/conditioning_000153.png differ
diff --git a/cam_examples/conditioning_000354.png b/cam_examples/conditioning_000354.png
new file mode 100644
index 0000000000000000000000000000000000000000..02b534675afac8bb83cf944c9098884fb6a74298
Binary files /dev/null and b/cam_examples/conditioning_000354.png differ
diff --git a/cam_examples/conditioning_000555.png b/cam_examples/conditioning_000555.png
new file mode 100644
index 0000000000000000000000000000000000000000..0d01f5c9be3b6118fad8fba41e4ffd11837d5676
Binary files /dev/null and b/cam_examples/conditioning_000555.png differ
diff --git a/cam_examples/conditioning_001026.png b/cam_examples/conditioning_001026.png
new file mode 100644
index 0000000000000000000000000000000000000000..266b1de4f9cd659d15ac6d176b3411753cd42159
Binary files /dev/null and b/cam_examples/conditioning_001026.png differ
diff --git a/data/config/semantic-kitti.yaml b/data/config/semantic-kitti.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..628106553b4b964920c825af42a53b4e39b73cfd
--- /dev/null
+++ b/data/config/semantic-kitti.yaml
@@ -0,0 +1,211 @@
+# This file is covered by the LICENSE file in the root of this project.
+labels: 
+  0 : "unlabeled"
+  1 : "outlier"
+  10: "car"
+  11: "bicycle"
+  13: "bus"
+  15: "motorcycle"
+  16: "on-rails"
+  18: "truck"
+  20: "other-vehicle"
+  30: "person"
+  31: "bicyclist"
+  32: "motorcyclist"
+  40: "road"
+  44: "parking"
+  48: "sidewalk"
+  49: "other-ground"
+  50: "building"
+  51: "fence"
+  52: "other-structure"
+  60: "lane-marking"
+  70: "vegetation"
+  71: "trunk"
+  72: "terrain"
+  80: "pole"
+  81: "traffic-sign"
+  99: "other-object"
+  252: "moving-car"
+  253: "moving-bicyclist"
+  254: "moving-person"
+  255: "moving-motorcyclist"
+  256: "moving-on-rails"
+  257: "moving-bus"
+  258: "moving-truck"
+  259: "moving-other-vehicle"
+color_map: # bgr
+  0 : [0, 0, 0]
+  1 : [0, 0, 255]
+  10: [245, 150, 100]
+  11: [245, 230, 100]
+  13: [250, 80, 100]
+  15: [150, 60, 30]
+  16: [255, 0, 0]
+  18: [180, 30, 80]
+  20: [255, 0, 0]
+  30: [30, 30, 255]
+  31: [200, 40, 255]
+  32: [90, 30, 150]
+  40: [255, 0, 255]
+  44: [255, 150, 255]
+  48: [75, 0, 75]
+  49: [75, 0, 175]
+  50: [0, 200, 255]
+  51: [50, 120, 255]
+  52: [0, 150, 255]
+  60: [170, 255, 150]
+  70: [0, 175, 0]
+  71: [0, 60, 135]
+  72: [80, 240, 150]
+  80: [150, 240, 255]
+  81: [0, 0, 255]
+  99: [255, 255, 50]
+  252: [245, 150, 100]
+  256: [255, 0, 0]
+  253: [200, 40, 255]
+  254: [30, 30, 255]
+  255: [90, 30, 150]
+  257: [250, 80, 100]
+  258: [180, 30, 80]
+  259: [255, 0, 0]
+content: # as a ratio with the total number of points
+  0: 0.018889854628292943
+  1: 0.0002937197336781505
+  10: 0.040818519255974316
+  11: 0.00016609538710764618
+  13: 2.7879693665067774e-05
+  15: 0.00039838616015114444
+  16: 0.0
+  18: 0.0020633612104619787
+  20: 0.0016218197275284021
+  30: 0.00017698551338515307
+  31: 1.1065903904919655e-08
+  32: 5.532951952459828e-09
+  40: 0.1987493871255525
+  44: 0.014717169549888214
+  48: 0.14392298360372
+  49: 0.0039048553037472045
+  50: 0.1326861944777486
+  51: 0.0723592229456223
+  52: 0.002395131480328884
+  60: 4.7084144280367186e-05
+  70: 0.26681502148037506
+  71: 0.006035012012626033
+  72: 0.07814222006271769
+  80: 0.002855498193863172
+  81: 0.0006155958086189918
+  99: 0.009923127583046915
+  252: 0.001789309418528068
+  253: 0.00012709999297008662
+  254: 0.00016059776092534436
+  255: 3.745553104802113e-05
+  256: 0.0
+  257: 0.00011351574470342043
+  258: 0.00010157861367183268
+  259: 4.3840131989471124e-05
+# classes that are indistinguishable from single scan or inconsistent in
+# ground truth are mapped to their closest equivalent
+learning_map:
+  0 : 0     # "unlabeled"
+  1 : 0     # "outlier" mapped to "unlabeled" --------------------------mapped
+  10: 1     # "car"
+  11: 2     # "bicycle"
+  13: 5     # "bus" mapped to "other-vehicle" --------------------------mapped
+  15: 3     # "motorcycle"
+  16: 5     # "on-rails" mapped to "other-vehicle" ---------------------mapped
+  18: 4     # "truck"
+  20: 5     # "other-vehicle"
+  30: 6     # "person"
+  31: 7     # "bicyclist"
+  32: 8     # "motorcyclist"
+  40: 9     # "road"
+  44: 10    # "parking"
+  48: 11    # "sidewalk"
+  49: 12    # "other-ground"
+  50: 13    # "building"
+  51: 14    # "fence"
+  52: 0     # "other-structure" mapped to "unlabeled" ------------------mapped
+  60: 9     # "lane-marking" to "road" ---------------------------------mapped
+  70: 15    # "vegetation"
+  71: 16    # "trunk"
+  72: 17    # "terrain"
+  80: 18    # "pole"
+  81: 19    # "traffic-sign"
+  99: 0     # "other-object" to "unlabeled" ----------------------------mapped
+  252: 1    # "moving-car" to "car" ------------------------------------mapped
+  253: 7    # "moving-bicyclist" to "bicyclist" ------------------------mapped
+  254: 6    # "moving-person" to "person" ------------------------------mapped
+  255: 8    # "moving-motorcyclist" to "motorcyclist" ------------------mapped
+  256: 5    # "moving-on-rails" mapped to "other-vehicle" --------------mapped
+  257: 5    # "moving-bus" mapped to "other-vehicle" -------------------mapped
+  258: 4    # "moving-truck" to "truck" --------------------------------mapped
+  259: 5    # "moving-other"-vehicle to "other-vehicle" ----------------mapped
+learning_map_inv: # inverse of previous map
+  0: 0      # "unlabeled", and others ignored
+  1: 10     # "car"
+  2: 11     # "bicycle"
+  3: 15     # "motorcycle"
+  4: 18     # "truck"
+  5: 20     # "other-vehicle"
+  6: 30     # "person"
+  7: 31     # "bicyclist"
+  8: 32     # "motorcyclist"
+  9: 40     # "road"
+  10: 44    # "parking"
+  11: 48    # "sidewalk"
+  12: 49    # "other-ground"
+  13: 50    # "building"
+  14: 51    # "fence"
+  15: 70    # "vegetation"
+  16: 71    # "trunk"
+  17: 72    # "terrain"
+  18: 80    # "pole"
+  19: 81    # "traffic-sign"
+learning_ignore: # Ignore classes
+  0: True      # "unlabeled", and others ignored
+  1: False     # "car"
+  2: False     # "bicycle"
+  3: False     # "motorcycle"
+  4: False     # "truck"
+  5: False     # "other-vehicle"
+  6: False     # "person"
+  7: False     # "bicyclist"
+  8: False     # "motorcyclist"
+  9: False     # "road"
+  10: False    # "parking"
+  11: False    # "sidewalk"
+  12: False    # "other-ground"
+  13: False    # "building"
+  14: False    # "fence"
+  15: False    # "vegetation"
+  16: False    # "trunk"
+  17: False    # "terrain"
+  18: False    # "pole"
+  19: False    # "traffic-sign"
+split: # sequence numbers
+  train:
+    - 0
+    - 1
+    - 2
+    - 3
+    - 4
+    - 5
+    - 6
+    - 7
+    - 9
+    - 10
+  valid:
+    - 8
+  test:
+    - 11
+    - 12
+    - 13
+    - 14
+    - 15
+    - 16
+    - 17
+    - 18
+    - 19
+    - 20
+    - 21
diff --git a/lidm/data/__init__.py b/lidm/data/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/data/annotated_dataset.py b/lidm/data/annotated_dataset.py
new file mode 100644
index 0000000000000000000000000000000000000000..a81bf6fb186a145b1a654e23291329683d37d918
--- /dev/null
+++ b/lidm/data/annotated_dataset.py
@@ -0,0 +1,48 @@
+from pathlib import Path
+from typing import Optional, List, Dict, Union, Any
+import warnings
+
+from torch.utils.data import Dataset
+
+from .conditional_builder.objects_bbox import ObjectsBoundingBoxConditionalBuilder
+from .conditional_builder.objects_center_points import ObjectsCenterPointsConditionalBuilder
+
+
+class Annotated3DObjectsDataset(Dataset):
+    def __init__(self, min_objects_per_image: int,
+                 max_objects_per_image: int, no_tokens: int, num_beams: int, cats: List[str],
+                 cat_blacklist: Optional[List[str]] = None, **kwargs):
+        self.min_objects_per_image = min_objects_per_image
+        self.max_objects_per_image = max_objects_per_image
+        self.no_tokens = no_tokens
+        self.num_beams = num_beams
+
+        self.categories = [c for c in cats if c not in cat_blacklist] if cat_blacklist is not None else cats
+        self._conditional_builders = None
+
+    @property
+    def no_classes(self) -> int:
+        return len(self.categories)
+
+    @property
+    def conditional_builders(self) -> ObjectsCenterPointsConditionalBuilder:
+        # cannot set this up in init because no_classes is only known after loading data in init of superclass
+        if self._conditional_builders is None:
+            self._conditional_builders = {
+                'center': ObjectsCenterPointsConditionalBuilder(
+                    self.no_classes,
+                    self.max_objects_per_image,
+                    self.no_tokens,
+                    self.num_beams
+                ),
+                'bbox': ObjectsBoundingBoxConditionalBuilder(
+                    self.no_classes,
+                    self.max_objects_per_image,
+                    self.no_tokens,
+                    self.num_beams
+                )
+            }
+        return self._conditional_builders
+
+    def get_textual_label_for_category_id(self, category_id: int) -> str:
+        return self.categories[category_id]
diff --git a/lidm/data/base.py b/lidm/data/base.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea9986df81f98aec686be929c3b620f660d02a92
--- /dev/null
+++ b/lidm/data/base.py
@@ -0,0 +1,121 @@
+import pdb
+from abc import abstractmethod
+from functools import partial
+
+import PIL
+import numpy as np
+from PIL import Image
+
+import torchvision.transforms.functional as TF
+from torch.utils.data import Dataset, IterableDataset
+
+from ..utils.aug_utils import get_lidar_transform, get_camera_transform, get_anno_transform
+
+
+class DatasetBase(Dataset):
+    def __init__(self, data_root, split, dataset_config, aug_config, return_pcd=False, condition_key=None,
+                 scale_factors=None, degradation=None, **kwargs):
+        self.data_root = data_root
+        self.split = split
+        self.data = []
+        self.aug_config = aug_config
+
+        self.img_size = dataset_config.size
+        self.fov = dataset_config.fov
+        self.depth_range = dataset_config.depth_range
+        self.filtered_map_cats = dataset_config.filtered_map_cats
+        self.depth_scale = dataset_config.depth_scale
+        self.log_scale = dataset_config.log_scale
+
+        if self.log_scale:
+            self.depth_thresh = (np.log2(1./255. + 1) / self.depth_scale) * 2. - 1 + 1e-6
+        else:
+            self.depth_thresh = (1./255. / self.depth_scale) * 2. - 1 + 1e-6
+        self.return_pcd = return_pcd
+
+        if degradation is not None and scale_factors is not None:
+            scaled_img_size = (int(self.img_size[0] / scale_factors[0]), int(self.img_size[1] / scale_factors[1]))
+            degradation_fn = {
+                "pil_nearest": PIL.Image.NEAREST,
+                "pil_bilinear": PIL.Image.BILINEAR,
+                "pil_bicubic": PIL.Image.BICUBIC,
+                "pil_box": PIL.Image.BOX,
+                "pil_hamming": PIL.Image.HAMMING,
+                "pil_lanczos": PIL.Image.LANCZOS,
+            }[degradation]
+            self.degradation_transform = partial(TF.resize, size=scaled_img_size, interpolation=degradation_fn)
+        else:
+            self.degradation_transform = None
+        self.condition_key = condition_key
+
+        self.lidar_transform = get_lidar_transform(aug_config, split)
+        self.anno_transform = get_anno_transform(aug_config, split) if condition_key in ['bbox', 'center'] else None
+        self.view_transform = get_camera_transform(aug_config, split) if condition_key in ['camera'] else None
+
+        self.prepare_data()
+
+    def prepare_data(self):
+        raise NotImplementedError
+
+    def process_scan(self, range_img):
+        range_img = np.where(range_img < 0, 0, range_img)
+
+        if self.log_scale:
+            # log scale
+            range_img = np.log2(range_img + 0.0001 + 1)
+
+        range_img = range_img / self.depth_scale
+        range_img = range_img * 2. - 1.
+
+        range_img = np.clip(range_img, -1, 1)
+        range_img = np.expand_dims(range_img, axis=0)
+
+        # mask
+        range_mask = np.ones_like(range_img)
+        range_mask[range_img < self.depth_thresh] = -1
+
+        return range_img, range_mask
+
+    @staticmethod
+    def load_lidar_sweep(*args, **kwargs):
+        raise NotImplementedError
+
+    @staticmethod
+    def load_semantic_map(*args, **kwargs):
+        raise NotImplementedError
+
+    @staticmethod
+    def load_camera(*args, **kwargs):
+        raise NotImplementedError
+
+    @staticmethod
+    def load_annotation(*args, **kwargs):
+        raise NotImplementedError
+
+    def __len__(self):
+        return len(self.data)
+
+    def __getitem__(self, idx):
+        example = dict()
+        return example
+
+
+class Txt2ImgIterableBaseDataset(IterableDataset):
+    """
+    Define an interface to make the IterableDatasets for text2img data chainable
+    """
+    def __init__(self, num_records=0, valid_ids=None, size=256):
+        super().__init__()
+        self.num_records = num_records
+        self.valid_ids = valid_ids
+        self.sample_ids = valid_ids
+        self.size = size
+
+        print(f'{self.__class__.__name__} dataset contains {self.__len__()} examples.')
+
+    def __len__(self):
+        return self.num_records
+
+    @abstractmethod
+    def __iter__(self):
+        pass
\ No newline at end of file
diff --git a/lidm/data/conditional_builder/__init__.py b/lidm/data/conditional_builder/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/data/conditional_builder/objects_bbox.py b/lidm/data/conditional_builder/objects_bbox.py
new file mode 100644
index 0000000000000000000000000000000000000000..982da90403dbcd7bcada38651cf13efdfb89bc3d
--- /dev/null
+++ b/lidm/data/conditional_builder/objects_bbox.py
@@ -0,0 +1,53 @@
+from itertools import cycle
+from typing import List, Tuple, Callable, Optional
+
+from PIL import Image as pil_image, ImageDraw as pil_img_draw, ImageFont
+from more_itertools.recipes import grouper
+from torch import LongTensor, Tensor
+
+from ..helper_types import BoundingBox, Annotation
+from .objects_center_points import ObjectsCenterPointsConditionalBuilder, convert_pil_to_tensor
+from .utils import COLOR_PALETTE, WHITE, GRAY_75, BLACK, additional_parameters_string, \
+    pad_list, get_plot_font_size, absolute_bbox
+
+
+class ObjectsBoundingBoxConditionalBuilder(ObjectsCenterPointsConditionalBuilder):
+    @property
+    def object_descriptor_length(self) -> int:
+        return 3  # 3/5: object_representation (1) + corners (2/4)
+
+    def _make_object_descriptors(self, annotations: List[Annotation]) -> List[Tuple[int, ...]]:
+        object_tuples = [
+            (self.object_representation(ann), *self.token_pair_from_bbox(ann.bbox))
+            for ann in annotations
+        ]
+        object_tuples = pad_list(object_tuples, self.empty_tuple, self.no_max_objects)
+        return object_tuples
+
+    def inverse_build(self, conditional: LongTensor) -> Tuple[List[Tuple[int, BoundingBox]], Optional[BoundingBox]]:
+        conditional_list = conditional.tolist()
+        object_triples = grouper(conditional_list, 3)
+        assert conditional.shape[0] == self.embedding_dim
+        return [(object_triple[0], self.bbox_from_token_pair(object_triple[1], object_triple[2])) for object_triple in object_triples if object_triple[0] != self.none], None
+
+    def plot(self, conditional: LongTensor, label_for_category_no: Callable[[int], str], figure_size: Tuple[int, int],
+             line_width: int = 3, font_size: Optional[int] = None) -> Tensor:
+        plot = pil_image.new('RGB', figure_size, WHITE)
+        draw = pil_img_draw.Draw(plot)
+        # font = ImageFont.truetype(
+        #     "/usr/share/fonts/truetype/lato/Lato-Regular.ttf",
+        #     size=get_plot_font_size(font_size, figure_size)
+        # )
+        font = ImageFont.load_default()
+        width, height = plot.size
+        description, crop_coordinates = self.inverse_build(conditional)
+        for (representation, bbox), color in zip(description, cycle(COLOR_PALETTE)):
+            annotation = self.representation_to_annotation(representation)
+            # class_label = label_for_category_no(annotation.category_id) + ' ' + additional_parameters_string(annotation)
+            class_label = label_for_category_no(annotation.category_id)
+            bbox = absolute_bbox(bbox, width, height)
+            draw.rectangle(bbox, outline=color, width=line_width)
+            draw.text((bbox[0] + line_width, bbox[1] + line_width), class_label, anchor='la', fill=BLACK, font=font)
+        if crop_coordinates is not None:
+            draw.rectangle(absolute_bbox(crop_coordinates, width, height), outline=GRAY_75, width=line_width)
+        return convert_pil_to_tensor(plot) / 127.5 - 1.
diff --git a/lidm/data/conditional_builder/objects_center_points.py b/lidm/data/conditional_builder/objects_center_points.py
new file mode 100644
index 0000000000000000000000000000000000000000..e9b75b85d10ae01b24f7e959fadd9a9b4632023b
--- /dev/null
+++ b/lidm/data/conditional_builder/objects_center_points.py
@@ -0,0 +1,150 @@
+import math
+import random
+import warnings
+from itertools import cycle
+from typing import List, Optional, Tuple, Callable
+
+from PIL import Image as pil_image, ImageDraw as pil_img_draw, ImageFont
+from more_itertools.recipes import grouper
+from .utils import COLOR_PALETTE, WHITE, GRAY_75, BLACK, additional_parameters_string, pad_list, get_circle_size, \
+    get_plot_font_size, absolute_bbox
+from ..helper_types import BoundingBox, Annotation, Image
+from torch import LongTensor, Tensor
+from torchvision.transforms import PILToTensor
+
+
+pil_to_tensor = PILToTensor()
+
+
+def convert_pil_to_tensor(image: Image) -> Tensor:
+    with warnings.catch_warnings():
+        # to filter PyTorch UserWarning as described here: https://github.com/pytorch/vision/issues/2194
+        warnings.simplefilter("ignore")
+        return pil_to_tensor(image)
+
+
+class ObjectsCenterPointsConditionalBuilder:
+    def __init__(self, no_object_classes: int, no_max_objects: int, no_tokens: int, num_beams: int):
+        self.no_object_classes = no_object_classes
+        self.no_max_objects = no_max_objects
+        self.no_tokens = no_tokens
+        # self.no_sections = int(math.sqrt(self.no_tokens))
+        self.no_sections = (self.no_tokens // num_beams, num_beams)  # (width, height)
+
+    @property
+    def none(self) -> int:
+        return self.no_tokens - 1
+
+    @property
+    def object_descriptor_length(self) -> int:
+        return 2
+
+    @property
+    def empty_tuple(self) -> Tuple:
+        return (self.none,) * self.object_descriptor_length
+
+    @property
+    def embedding_dim(self) -> int:
+        return self.no_max_objects * self.object_descriptor_length
+
+    def tokenize_coordinates(self, x: float, y: float) -> int:
+        """
+        Express 2d coordinates with one number.
+        Example: assume self.no_tokens = 16, then no_sections = 4:
+        0  0  0  0
+        0  0  #  0
+        0  0  0  0
+        0  0  0  x
+        Then the # position corresponds to token 6, the x position to token 15.
+        @param x: float in [0, 1]
+        @param y: float in [0, 1]
+        @return: discrete tokenized coordinate
+        """
+        x_discrete = int(round(x * (self.no_sections[0] - 1)))
+        y_discrete = int(round(y * (self.no_sections[1] - 1)))
+        return y_discrete * self.no_sections[0] + x_discrete
+
+    def coordinates_from_token(self, token: int) -> (float, float):
+        x = token % self.no_sections[0]
+        y = token // self.no_sections[0]
+        return x / (self.no_sections[0] - 1), y / (self.no_sections[1] - 1)
+
+    def bbox_from_token_pair(self, token1: int, token2: int) -> BoundingBox:
+        x0, y0 = self.coordinates_from_token(token1)
+        x1, y1 = self.coordinates_from_token(token2)
+        # x2, y2 = self.coordinates_from_token(token3)
+        # x3, y3 = self.coordinates_from_token(token4)
+        return x0, y0, x1, y1
+
+    def token_pair_from_bbox(self, bbox: BoundingBox) -> Tuple:
+        # return self.tokenize_coordinates(bbox[0], bbox[1]), self.tokenize_coordinates(bbox[2], bbox[3]), self.tokenize_coordinates(bbox[4], bbox[5]), self.tokenize_coordinates(bbox[6], bbox[7])
+        return self.tokenize_coordinates(bbox[0], bbox[1]), self.tokenize_coordinates(bbox[4], bbox[5])
+
+    def inverse_build(self, conditional: LongTensor) \
+            -> Tuple[List[Tuple[int, Tuple[float, float]]], Optional[BoundingBox]]:
+        conditional_list = conditional.tolist()
+        table_of_content = grouper(conditional_list, self.object_descriptor_length)
+        assert conditional.shape[0] == self.embedding_dim
+        return [
+            (object_tuple[0], self.coordinates_from_token(object_tuple[1]))
+            for object_tuple in table_of_content if object_tuple[0] != self.none
+        ], None
+
+    def plot(self, conditional: LongTensor, label_for_category_no: Callable[[int], str], figure_size: Tuple[int, int],
+             line_width: int = 3, font_size: Optional[int] = None) -> Tensor:
+        plot = pil_image.new('RGB', figure_size, WHITE)
+        draw = pil_img_draw.Draw(plot)
+        circle_size = get_circle_size(figure_size)
+        # font = ImageFont.truetype('/usr/share/fonts/truetype/lato/Lato-Regular.ttf',
+        #                           size=get_plot_font_size(font_size, figure_size))
+        font = ImageFont.load_default()
+        width, height = plot.size
+        description, crop_coordinates = self.inverse_build(conditional)
+        for (representation, (x, y)), color in zip(description, cycle(COLOR_PALETTE)):
+            x_abs, y_abs = x * width, y * height
+            ann = self.representation_to_annotation(representation)
+            label = label_for_category_no(ann.category_id) + ' ' + additional_parameters_string(ann)
+            ellipse_bbox = [x_abs - circle_size, y_abs - circle_size, x_abs + circle_size, y_abs + circle_size]
+            draw.ellipse(ellipse_bbox, fill=color, width=0)
+            draw.text((x_abs, y_abs), label, anchor='md', fill=BLACK, font=font)
+        if crop_coordinates is not None:
+            draw.rectangle(absolute_bbox(crop_coordinates, width, height), outline=GRAY_75, width=line_width)
+        return convert_pil_to_tensor(plot) / 127.5 - 1.
+
+    def object_representation(self, annotation: Annotation) -> int:
+        return annotation.category_id
+
+    def representation_to_annotation(self, representation: int) -> Annotation:
+        category_id = representation % self.no_object_classes
+        # noinspection PyTypeChecker
+        return Annotation(
+            bbox=None,
+            category_id=category_id,
+        )
+
+    def _make_object_descriptors(self, annotations: List[Annotation]) -> List[Tuple[int, ...]]:
+        object_tuples = [
+            (self.object_representation(a),
+             self.tokenize_coordinates(a.center[0], a.center[1]))
+            for a in annotations
+        ]
+        empty_tuple = (self.none, self.none)
+        object_tuples = pad_list(object_tuples, empty_tuple, self.no_max_objects)
+        return object_tuples
+
+    def build(self, annotations: List[Annotation]) \
+            -> LongTensor:
+        if len(annotations) == 0:
+            warnings.warn('Did not receive any annotations.')
+
+        random.shuffle(annotations)
+        if len(annotations) > self.no_max_objects:
+            warnings.warn('Received more annotations than allowed.')
+            annotations = annotations[:self.no_max_objects]
+
+        object_tuples = self._make_object_descriptors(annotations)
+        flattened = [token for tuple_ in object_tuples for token in tuple_]
+        assert len(flattened) == self.embedding_dim
+        assert all(0 <= value < self.no_tokens for value in flattened)
+
+        return LongTensor(flattened)
diff --git a/lidm/data/conditional_builder/utils.py b/lidm/data/conditional_builder/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..e162ccdde4e61b535c85f7a0ca58c9101d184d79
--- /dev/null
+++ b/lidm/data/conditional_builder/utils.py
@@ -0,0 +1,188 @@
+import importlib
+from typing import List, Any, Tuple, Optional
+
+import numpy as np
+from ..helper_types import BoundingBox, Annotation
+
+# source: seaborn, color palette tab10
+COLOR_PALETTE = [(30, 118, 179), (255, 126, 13), (43, 159, 43), (213, 38, 39), (147, 102, 188),
+                 (139, 85, 74), (226, 118, 193), (126, 126, 126), (187, 188, 33), (22, 189, 206)]
+BLACK = (0, 0, 0)
+GRAY_75 = (63, 63, 63)
+GRAY_50 = (127, 127, 127)
+GRAY_25 = (191, 191, 191)
+WHITE = (255, 255, 255)
+FULL_CROP = (0., 0., 1., 1.)
+
+
+def corners_3d_to_2d(corners3d):
+    """
+    Args:
+        corners3d: (N, 8, 2)
+    Returns:
+        corners2d: (N, 4, 2)
+    """
+    # select pairs to reorganize
+    mask_0_3 = corners3d[:, 0:4, 0].argmax(1) // 2 != 0
+    mask_4_7 = corners3d[:, 4:8, 0].argmin(1) // 2 != 0
+
+    # reorganize corners in the order of (bottom-right, bottom-left)
+    corners3d[mask_0_3, 0:4] = corners3d[mask_0_3][:, [2, 3, 0, 1]]
+    # reorganize corners in the order of (top-left, top-right)
+    corners3d[mask_4_7, 4:8] = corners3d[mask_4_7][:, [2, 3, 0, 1]]
+
+    # calculate corners in order
+    bot_r = np.stack([corners3d[:, 0:2, 0].max(1), corners3d[:, 0:2, 1].min(1)], axis=-1)
+    bot_l = np.stack([corners3d[:, 2:4, 0].min(1), corners3d[:, 2:4, 1].min(1)], axis=-1)
+    top_l = np.stack([corners3d[:, 4:6, 0].min(1), corners3d[:, 4:6, 1].max(1)], axis=-1)
+    top_r = np.stack([corners3d[:, 6:8, 0].max(1), corners3d[:, 6:8, 1].max(1)], axis=-1)
+
+    return np.stack([bot_r, bot_l, top_l, top_r], axis=1)
+
+
+def rotate_points_along_z(points, angle):
+    """
+    Args:
+        points: (N, 3 + C)
+        angle: angle along z-axis, angle increases x ==> y
+    Returns:
+
+    """
+    cosa = np.cos(angle)
+    sina = np.sin(angle)
+    zeros = np.zeros(points.shape[0])
+    ones = np.ones(points.shape[0])
+    rot_matrix = np.stack((
+        cosa,  sina, zeros,
+        -sina, cosa, zeros,
+        zeros, zeros, ones)).reshape((-1, 3, 3))
+    points_rot = np.matmul(points[:, :, 0:3], rot_matrix)
+    points_rot = np.concatenate((points_rot, points[:, :, 3:]), axis=-1)
+    return points_rot
+
+
+def boxes_to_corners_3d(boxes3d):
+    """
+        7 -------- 4
+       /|         /|
+      6 -------- 5 .
+      | |        | |
+      . 3 -------- 0
+      |/         |/
+      2 -------- 1
+    Args:
+        boxes3d:  (N, 7) [x, y, z, dx, dy, dz, heading], (x, y, z) is the box center
+
+    Returns:
+        corners3d: (N, 8, 3)
+    """
+    template = np.array(
+        [[1, 1, -1], [1, -1, -1], [-1, -1, -1], [-1, 1, -1],
+        [1, 1, 1], [1, -1, 1], [-1, -1, 1], [-1, 1, 1]],
+    ) / 2
+
+    # corners3d = boxes3d[:, None, 3:6].repeat(1, 8, 1) * template[None, :, :]
+    corners3d = np.tile(boxes3d[:, None, 3:6], (1, 8, 1)) * template[None, :, :]
+    corners3d = rotate_points_along_z(corners3d.reshape((-1, 8, 3)), boxes3d[:, 6]).reshape((-1, 8, 3))
+    corners3d += boxes3d[:, None, 0:3]
+
+    return corners3d
+
+
+def intersection_area(rectangle1: BoundingBox, rectangle2: BoundingBox) -> float:
+    """
+    Give intersection area of two rectangles.
+    @param rectangle1: (x0, y0, w, h) of first rectangle
+    @param rectangle2: (x0, y0, w, h) of second rectangle
+    """
+    rectangle1 = rectangle1[0], rectangle1[1], rectangle1[0] + rectangle1[2], rectangle1[1] + rectangle1[3]
+    rectangle2 = rectangle2[0], rectangle2[1], rectangle2[0] + rectangle2[2], rectangle2[1] + rectangle2[3]
+    x_overlap = max(0., min(rectangle1[2], rectangle2[2]) - max(rectangle1[0], rectangle2[0]))
+    y_overlap = max(0., min(rectangle1[3], rectangle2[3]) - max(rectangle1[1], rectangle2[1]))
+    return x_overlap * y_overlap
+
+
+def horizontally_flip_bbox(bbox: BoundingBox) -> BoundingBox:
+    return 1 - (bbox[0] + bbox[2]), bbox[1], bbox[2], bbox[3]
+
+
+def absolute_bbox(relative_bbox: BoundingBox, width: int, height: int) -> Tuple[int, int, int, int]:
+    bbox = relative_bbox
+    # bbox = bbox[0] * width, bbox[1] * height, (bbox[0] + bbox[2]) * width, (bbox[1] + bbox[3]) * height
+    bbox = bbox[0] * width, bbox[1] * height, bbox[2] * width, bbox[3] * height
+    # return int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
+    x1, x2 = min(int(bbox[2]), int(bbox[0])), max(int(bbox[2]), int(bbox[0]))
+    y1, y2 = min(int(bbox[3]), int(bbox[1])), max(int(bbox[3]), int(bbox[1]))
+    if x1 == x2:
+        x2 += 1
+    if y1 == y2:
+        y2 += 1
+    return x1, y1, x2, y2
+
+
+def pad_list(list_: List, pad_element: Any, pad_to_length: int) -> List:
+    return list_ + [pad_element for _ in range(pad_to_length - len(list_))]
+
+
+def rescale_annotations(annotations: List[Annotation], crop_coordinates: BoundingBox, flip: bool) -> \
+        List[Annotation]:
+    def clamp(x: float):
+        return max(min(x, 1.), 0.)
+
+    def rescale_bbox(bbox: BoundingBox) -> BoundingBox:
+        x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
+        y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
+        w = min(bbox[2] / crop_coordinates[2], 1 - x0)
+        h = min(bbox[3] / crop_coordinates[3], 1 - y0)
+        if flip:
+            x0 = 1 - (x0 + w)
+        return x0, y0, w, h
+
+    return [a._replace(bbox=rescale_bbox(a.bbox)) for a in annotations]
+
+
+def filter_annotations(annotations: List[Annotation], crop_coordinates: BoundingBox) -> List:
+    return [a for a in annotations if intersection_area(a.bbox, crop_coordinates) > 0.0]
+
+
+def additional_parameters_string(annotation: Annotation, short: bool = True) -> str:
+    sl = slice(1) if short else slice(None)
+    string = ''
+    if not (annotation.is_group_of or annotation.is_occluded or annotation.is_depiction or annotation.is_inside):
+        return string
+    if annotation.is_group_of:
+        string += 'group'[sl] + ','
+    if annotation.is_occluded:
+        string += 'occluded'[sl] + ','
+    if annotation.is_depiction:
+        string += 'depiction'[sl] + ','
+    if annotation.is_inside:
+        string += 'inside'[sl]
+    return '(' + string.strip(",") + ')'
+
+
+def get_plot_font_size(font_size: Optional[int], figure_size: Tuple[int, int]) -> int:
+    if font_size is None:
+        font_size = 10
+        if max(figure_size) >= 256:
+            font_size = 12
+        if max(figure_size) >= 512:
+            font_size = 15
+    return font_size
+
+
+def get_circle_size(figure_size: Tuple[int, int]) -> int:
+    circle_size = 2
+    if max(figure_size) >= 256:
+        circle_size = 3
+    if max(figure_size) >= 512:
+        circle_size = 4
+    return circle_size
+
+
+def load_object_from_string(object_string: str) -> Any:
+    """
+    Source: https://stackoverflow.com/a/10773699
+    """
+    module_name, class_name = object_string.rsplit(".", 1)
+    return getattr(importlib.import_module(module_name), class_name)
diff --git a/lidm/data/helper_types.py b/lidm/data/helper_types.py
new file mode 100644
index 0000000000000000000000000000000000000000..ae525c7775ad55090511ef021db5867ce030e421
--- /dev/null
+++ b/lidm/data/helper_types.py
@@ -0,0 +1,20 @@
+from typing import Tuple, Optional, NamedTuple, Union, List
+from PIL.Image import Image as pil_image
+from torch import Tensor
+
+try:
+  from typing import Literal
+except ImportError:
+  from typing_extensions import Literal
+
+Image = Union[Tensor, pil_image]
+# BoundingBox = Tuple[float, float, float, float]  # x0, y0, w, h | x0, y0, x1, y1
+# BoundingBox3D = Tuple[float, float, float, float, float, float]  # x0, y0, z0, l, w, h
+BoundingBox = Tuple[float, float, float, float]  # corner coordinates (x,y) in the order of bottom-right -> bottom-left -> top-left -> top-right
+Center = Tuple[float, float]
+
+
+class Annotation(NamedTuple):
+    category_id: int
+    bbox: Optional[BoundingBox] = None
+    center: Optional[Center] = None
diff --git a/lidm/data/kitti.py b/lidm/data/kitti.py
new file mode 100644
index 0000000000000000000000000000000000000000..103426449bbda265d817ea2641dd48c3194d2c4e
--- /dev/null
+++ b/lidm/data/kitti.py
@@ -0,0 +1,345 @@
+import glob
+import os
+import pickle
+import numpy as np
+import yaml
+from PIL import Image
+import xml.etree.ElementTree as ET
+
+from lidm.data.base import DatasetBase
+from .annotated_dataset import Annotated3DObjectsDataset
+from .conditional_builder.utils import corners_3d_to_2d
+from .helper_types import Annotation
+from ..utils.lidar_utils import pcd2range, pcd2coord2d, range2pcd
+
+# TODO add annotation categories and semantic categories
+CATEGORIES = ['ignore', 'car', 'bicycle', 'motorcycle', 'truck', 'other-vehicle', 'person', 'bicyclist', 'motorcyclist',
+              'road', 'parking', 'sidewalk', 'other-ground', 'building', 'fence', 'vegetation', 'trunk', 'terrain',
+              'pole', 'traffic-sign']
+CATE2LABEL = {k: v for v, k in enumerate(CATEGORIES)}  # 0: invalid, 1~10: categories
+LABEL2RGB = np.array([(0, 0, 0), (0, 0, 142), (119, 11, 32), (0, 0, 230), (0, 0, 70), (0, 0, 90), (220, 20, 60),
+                      (255, 0, 0), (0, 0, 110), (128, 64, 128), (250, 170, 160), (244, 35, 232), (230, 150, 140),
+                      (70, 70, 70), (190, 153, 153), (107, 142, 35), (0, 80, 100), (230, 150, 140), (153, 153, 153),
+                      (220, 220, 0)])
+CAMERAS = ['CAM_FRONT']
+BBOX_CATS = ['car', 'people', 'cycle']
+BBOX_CAT2LABEL = {'car': 0, 'truck': 0, 'bus': 0, 'caravan': 0, 'person': 1, 'rider': 2, 'motorcycle': 2, 'bicycle': 2}
+
+# train + test
+SEM_KITTI_TRAIN_SET = ['00', '01', '02', '03', '04', '05', '06', '07', '09', '10']
+KITTI_TRAIN_SET = SEM_KITTI_TRAIN_SET + ['11', '12', '13', '14', '15', '16', '17', '18', '19', '20', '21']
+KITTI360_TRAIN_SET = ['00', '02', '04', '05', '06', '07', '09', '10'] + ['08']  # partial test data at '02' sequence
+CAM_KITTI360_TRAIN_SET = ['00', '04', '05', '06', '07', '08', '09', '10']  # cam mismatch lidar in '02'
+
+# validation
+SEM_KITTI_VAL_SET = KITTI_VAL_SET = ['08']
+CAM_KITTI360_VAL_SET = KITTI360_VAL_SET = ['03']
+
+
+class KITTIBase(DatasetBase):
+    def __init__(self, **kwargs):
+        super().__init__(**kwargs)
+        self.dataset_name = 'kitti'
+        self.num_sem_cats = kwargs['dataset_config'].num_sem_cats + 1
+
+    @staticmethod
+    def load_lidar_sweep(path):
+        scan = np.fromfile(path, dtype=np.float32)
+        scan = scan.reshape((-1, 4))
+        points = scan[:, 0:3]  # get xyz
+        return points
+
+    def load_semantic_map(self, path, pcd):
+        raise NotImplementedError
+
+    def load_camera(self, path):
+        raise NotImplementedError
+
+    def __getitem__(self, idx):
+        example = dict()
+        data_path = self.data[idx]
+        # lidar point cloud
+        sweep = self.load_lidar_sweep(data_path)
+
+        if self.lidar_transform:
+            sweep, _ = self.lidar_transform(sweep, None)
+
+        if self.condition_key == 'segmentation':
+            # semantic maps
+            proj_range, sem_map = self.load_semantic_map(data_path, sweep)
+            example[self.condition_key] = sem_map
+        else:
+            proj_range, _ = pcd2range(sweep, self.img_size, self.fov, self.depth_range)
+        proj_range, proj_mask = self.process_scan(proj_range)
+        example['image'], example['mask'] = proj_range, proj_mask
+        if self.return_pcd:
+            reproj_sweep, _, _ = range2pcd(proj_range[0] * .5 + .5, self.fov, self.depth_range, self.depth_scale, self.log_scale)
+            example['raw'] = sweep
+            example['reproj'] = reproj_sweep.astype(np.float32)
+
+        # image degradation
+        if self.degradation_transform:
+            degraded_proj_range = self.degradation_transform(proj_range)
+            example['degraded_image'] = degraded_proj_range
+
+        # cameras
+        if self.condition_key == 'camera':
+            cameras = self.load_camera(data_path)
+            example[self.condition_key] = cameras
+
+        return example
+
+
+class SemanticKITTIBase(KITTIBase):
+    def __init__(self, **kwargs):
+        super().__init__(**kwargs)
+        assert self.condition_key in ['segmentation']  # for segmentation input only
+        self.label2rgb = LABEL2RGB
+
+    def prepare_data(self):
+        # read data paths from KITTI
+        for seq_id in eval('SEM_KITTI_%s_SET' % self.split.upper()):
+            self.data.extend(glob.glob(os.path.join(
+                self.data_root, f'dataset/sequences/{seq_id}/velodyne/*.bin')))
+        # read label mapping
+        data_config = yaml.safe_load(open('./data/config/semantic-kitti.yaml', 'r'))
+        remap_dict = data_config["learning_map"]
+        max_key = max(remap_dict.keys())
+        self.learning_map = np.zeros((max_key + 100), dtype=np.int32)
+        self.learning_map[list(remap_dict.keys())] = list(remap_dict.values())
+
+    def load_semantic_map(self, path, pcd):
+        label_path = path.replace('velodyne', 'labels').replace('.bin', '.label')
+        labels = np.fromfile(label_path, dtype=np.uint32)
+        labels = labels.reshape((-1))
+        labels = labels & 0xFFFF  # semantic label in lower half
+        labels = self.learning_map[labels]
+
+        proj_range, sem_map = pcd2range(pcd, self.img_size, self.fov, self.depth_range, labels=labels)
+        # sem_map = np.expand_dims(sem_map, axis=0).astype(np.int64)
+        sem_map = sem_map.astype(np.int64)
+        if self.filtered_map_cats is not None:
+            sem_map[np.isin(sem_map, self.filtered_map_cats)] = 0  # set filtered category as noise
+        onehot = np.eye(self.num_sem_cats, dtype=np.float32)[sem_map].transpose(2, 0, 1)
+        return proj_range, onehot
+
+
+class SemanticKITTITrain(SemanticKITTIBase):
+    def __init__(self, **kwargs):
+        super().__init__(data_root='./dataset/SemanticKITTI', split='train', **kwargs)
+
+
+class SemanticKITTIValidation(SemanticKITTIBase):
+    def __init__(self, **kwargs):
+        super().__init__(data_root='./dataset/SemanticKITTI', split='val', **kwargs)
+
+
+class KITTI360Base(KITTIBase):
+    def __init__(self, split_per_view=None, **kwargs):
+        super().__init__(**kwargs)
+        self.split_per_view = split_per_view
+        if self.condition_key == 'camera':
+            assert self.split_per_view is not None, 'For camera-to-lidar, need to specify split_per_view'
+
+    def prepare_data(self):
+        # read data paths
+        self.data = []
+        if self.condition_key == 'camera':
+            seq_list = eval('CAM_KITTI360_%s_SET' % self.split.upper())
+        else:
+            seq_list = eval('KITTI360_%s_SET' % self.split.upper())
+        for seq_id in seq_list:
+            self.data.extend(glob.glob(os.path.join(
+                self.data_root, f'data_3d_raw/2013_05_28_drive_00{seq_id}_sync/velodyne_points/data/*.bin')))
+
+    def random_drop_camera(self, camera_list):
+        if np.random.rand() < self.aug_config['camera_drop'] and self.split == 'train':
+            camera_list = [np.zeros_like(c) if i != len(camera_list) // 2 else c for i, c in enumerate(camera_list)]  # keep the middle view only
+        return camera_list
+
+    def load_camera(self, path):
+        camera_path = path.replace('data_3d_raw', 'data_2d_camera').replace('velodyne_points/data', 'image_00/data_rect').replace('.bin', '.png')
+        camera = np.array(Image.open(camera_path)).astype(np.float32) / 255.
+        camera = camera.transpose(2, 0, 1)
+        if self.view_transform:
+            camera = self.view_transform(camera)
+        camera_list = np.split(camera, self.split_per_view, axis=2)  # split into n chunks as different views
+        camera_list = self.random_drop_camera(camera_list)
+        return camera_list
+
+
+class KITTI360Train(KITTI360Base):
+    def __init__(self, **kwargs):
+        super().__init__(data_root='./dataset/KITTI-360', split='train', **kwargs)
+
+
+class KITTI360Validation(KITTI360Base):
+    def __init__(self, **kwargs):
+        super().__init__(data_root='./dataset/KITTI-360', split='val', **kwargs)
+
+
+class AnnotatedKITTI360Base(Annotated3DObjectsDataset, KITTI360Base):
+    def __init__(self, **kwargs):
+        self.id_bbox_dict = dict()
+        self.id_label_dict = dict()
+
+        Annotated3DObjectsDataset.__init__(self, **kwargs)
+        KITTI360Base.__init__(self, **kwargs)
+        assert self.condition_key in ['center', 'bbox']  # for annotated images only
+
+    @staticmethod
+    def parseOpencvMatrix(node):
+        rows = int(node.find('rows').text)
+        cols = int(node.find('cols').text)
+        data = node.find('data').text.split(' ')
+
+        mat = []
+        for d in data:
+            d = d.replace('\n', '')
+            if len(d) < 1:
+                continue
+            mat.append(float(d))
+        mat = np.reshape(mat, [rows, cols])
+        return mat
+
+    def parseVertices(self, child):
+        transform = self.parseOpencvMatrix(child.find('transform'))
+        R = transform[:3, :3]
+        T = transform[:3, 3]
+        vertices = self.parseOpencvMatrix(child.find('vertices'))
+        vertices = np.matmul(R, vertices.transpose()).transpose() + T
+        return vertices
+
+    def parse_bbox_xml(self, path):
+        tree = ET.parse(path)
+        root = tree.getroot()
+
+        bbox_dict = dict()
+        label_dict = dict()
+        for child in root:
+            if child.find('transform') is None:
+                continue
+
+            label_name = child.find('label').text
+            if label_name not in BBOX_CAT2LABEL:
+                continue
+
+            label = BBOX_CAT2LABEL[label_name]
+            timestamp = int(child.find('timestamp').text)
+            # verts = self.parseVertices(child)
+            verts = self.parseOpencvMatrix(child.find('vertices'))[:8]
+            if timestamp in bbox_dict:
+                bbox_dict[timestamp].append(verts)
+                label_dict[timestamp].append(label)
+            else:
+                bbox_dict[timestamp] = [verts]
+                label_dict[timestamp] = [label]
+        return bbox_dict, label_dict
+
+    def prepare_data(self):
+        KITTI360Base.prepare_data(self)
+
+        self.data = [p for p in self.data if '2013_05_28_drive_0008_sync' not in p]  # remove unlabeled sequence 08
+        seq_list = eval('KITTI360_%s_SET' % self.split.upper())
+        for seq_id in seq_list:
+            if seq_id != '08':
+                xml_path = os.path.join(self.data_root, f'data_3d_bboxes/train/2013_05_28_drive_00{seq_id}_sync.xml')
+                bbox_dict, label_dict = self.parse_bbox_xml(xml_path)
+                self.id_bbox_dict[seq_id] = bbox_dict
+                self.id_label_dict[seq_id] = label_dict
+
+    def load_annotation(self, path):
+        seq_id = path.split('/')[-4].split('_')[-2][-2:]
+        timestamp = int(path.split('/')[-1].replace('.bin', ''))
+        verts_list = self.id_bbox_dict[seq_id][timestamp]
+        label_list = self.id_label_dict[seq_id][timestamp]
+
+        if self.condition_key == 'bbox':
+            points = np.stack(verts_list)
+        elif self.condition_key == 'center':
+            points = (verts_list[0] + verts_list[6]) / 2.
+        else:
+            raise NotImplementedError
+        labels = np.array([label_list])
+        if self.anno_transform:
+            points, labels = self.anno_transform(points, labels)
+        return points, labels
+
+    def __getitem__(self, idx):
+        example = dict()
+        data_path = self.data[idx]
+
+        # lidar point cloud
+        sweep = self.load_lidar_sweep(data_path)
+
+        # annotations
+        bbox_points, bbox_labels = self.load_annotation(data_path)
+
+        if self.lidar_transform:
+            sweep, bbox_points = self.lidar_transform(sweep, bbox_points)
+
+        # point cloud -> range
+        proj_range, _ = pcd2range(sweep, self.img_size, self.fov, self.depth_range)
+        proj_range, proj_mask = self.process_scan(proj_range)
+        example['image'], example['mask'] = proj_range, proj_mask
+        if self.return_pcd:
+            example['reproj'] = sweep
+
+        # annotation -> range
+        # NOTE: do not need to transform bbox points along with lidar, since their coordinates are based on range-image space instead of 3D space
+        proj_bbox_points, proj_bbox_labels = pcd2coord2d(bbox_points, self.fov, self.depth_range, labels=bbox_labels)
+        builder = self.conditional_builders[self.condition_key]
+        if self.condition_key == 'bbox':
+            proj_bbox_points = corners_3d_to_2d(proj_bbox_points)
+            annotations = [Annotation(bbox=bbox.flatten(), category_id=label) for bbox, label in
+                           zip(proj_bbox_points, proj_bbox_labels)]
+        else:
+            annotations = [Annotation(center=center, category_id=label) for center, label in
+                           zip(proj_bbox_points, proj_bbox_labels)]
+        example[self.condition_key] = builder.build(annotations)
+
+        return example
+
+
+class AnnotatedKITTI360Train(AnnotatedKITTI360Base):
+    def __init__(self, **kwargs):
+        super().__init__(data_root='./dataset/KITTI-360', split='train', cats=BBOX_CATS, **kwargs)
+
+
+class AnnotatedKITTI360Validation(AnnotatedKITTI360Base):
+    def __init__(self, **kwargs):
+        super().__init__(data_root='./dataset/KITTI-360', split='train', cats=BBOX_CATS, **kwargs)
+
+
+class KITTIImageBase(KITTIBase):
+    """
+    Range ImageSet only combining KITTI-360 and SemanticKITTI
+
+    #Samples (Training): 98014, #Samples (Val): 3511
+
+    """
+    def __init__(self, **kwargs):
+        super().__init__(**kwargs)
+        assert self.condition_key in [None, 'image']  # for image input only
+
+    def prepare_data(self):
+        # read data paths from KITTI-360
+        self.data = []
+        for seq_id in eval('KITTI360_%s_SET' % self.split.upper()):
+            self.data.extend(glob.glob(os.path.join(
+                self.data_root, f'KITTI-360/data_3d_raw/2013_05_28_drive_00{seq_id}_sync/velodyne_points/data/*.bin')))
+
+        # read data paths from KITTI
+        for seq_id in eval('KITTI_%s_SET' % self.split.upper()):
+            self.data.extend(glob.glob(os.path.join(
+                self.data_root, f'SemanticKITTI/dataset/sequences/{seq_id}/velodyne/*.bin')))
+
+
+class KITTIImageTrain(KITTIImageBase):
+    def __init__(self, **kwargs):
+        super().__init__(data_root='./dataset', split='train', **kwargs)
+
+
+class KITTIImageValidation(KITTIImageBase):
+    def __init__(self, **kwargs):
+        super().__init__(data_root='./dataset', split='val', **kwargs)
diff --git a/lidm/eval/README.md b/lidm/eval/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..33e8f8998cf905ac22e4b64a1b4ba87153ca880e
--- /dev/null
+++ b/lidm/eval/README.md
@@ -0,0 +1,95 @@
+# Evaluation Toolbox for LiDAR Generation
+
+This directory is a **self-contained**, **memory-friendly** and mostly **CUDA-accelerated** toolbox of multiple evaluation metrics for LiDAR generative models, including:
+* Perceptual metrics (our proposed):
+  * Fréchet Range Image Distance (**FRID**)
+  * Fréchet Sparse Volume Distance (**FSVD**)
+  * Fréchet Point-based Volume Distance (**FPVD**)
+* Statistical metrics (proposed in [Learning Representations and Generative Models for 3D Point Clouds](https://arxiv.org/abs/1707.02392)):
+  * Minimum Matching Distance (**MMD**)
+  * Jensen-Shannon Divergence (**JSD**)
+* Statistical pairwise metrics (for reconstruction only):
+  * Chamfer Distance (**CD**)
+  * Earth Mover's Distance (**EMD**)
+
+## Citation
+
+If you find this project useful in your research, please consider citing:
+```
+@article{ran2024towards,
+  title={Towards Realistic Scene Generation with LiDAR Diffusion Models},
+  author={Ran, Haoxi and Guizilini, Vitor and Wang, Yue},
+  journal={arXiv preprint arXiv:2404.00815},
+  year={2024}
+}
+```
+
+
+## Dependencies
+
+### Basic (install through **pip**):
+* scipy
+* numpy
+* torch
+* pyyaml
+
+### Required by FSVD and FPVD:
+* [Torchsparse v1.4.0](https://github.com/mit-han-lab/torchsparse/tree/v1.4.0) (pip install git+https://github.com/mit-han-lab/torchsparse.git@v1.4.0)
+* [Google Sparse Hash library](https://github.com/sparsehash/sparsehash) (apt-get install libsparsehash-dev **or** compile locally and update variable CPLUS_INCLUDE_PATH with directory path)
+
+
+## Model Zoo 
+
+To evaluate with perceptual metrics on different types of LiDAR data, you can download all models through:
+*  this [google drive link](https://drive.google.com/file/d/1Ml4p4_nMlwLkSp7JB528GJv2_HxO8v1i/view?usp=drive_link) in the .zip file 
+
+or
+*  the **full directory** of one specific model:
+
+### 64-beam LiDAR (trained on [SemanticKITTI](http://semantic-kitti.org/dataset.html)):
+
+| Metric |                                            Model                                            |          Arch           |                                                  Link                                                   | Code                                                             | Comments                                                                  |
+|:------:|:-------------------------------------------------------------------------------------------:|:-----------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------|---------------------------------------------------------------------------|
+|  FRID  | [RangeNet++](https://www.ipb.uni-bonn.de/wp-content/papercite-data/pdf/milioto2019iros.pdf) |  DarkNet21-based UNet   | [Google Drive](https://drive.google.com/drive/folders/1ZS8KOoxB9hjB6kwKbH5Zfc8O5qJlKsbl?usp=drive_link) | [./models/rangenet/model.py](./models/rangenet/model.py)         | range image input (our trained model without the need of remission input) |
+|  FSVD  |                      [MinkowskiNet](https://arxiv.org/abs/1904.08755)                       |       Sparse UNet       | [Google Drive](https://drive.google.com/drive/folders/1zN12ZEvjIvo4PCjAsncgC22yvtRrCCMe?usp=drive_link) | [./models/minkowskinet/model.py](./models/minkowskinet/model.py) | point cloud input                                                         |
+|  FPVD  |                         [SPVCNN](https://arxiv.org/abs/2007.16100)                          | Point-Voxel Sparse UNet | [Google Drive](https://drive.google.com/drive/folders/1oEm3qpxfGetiVAfXIvecawEiFqW79M6B?usp=drive_link) | [./models/spvcnn/model.py](./models/spvcnn/model.py)             | point cloud input                                                         |
+
+
+### 32-beam LiDAR (trained on [nuScenes](https://www.nuscenes.org/nuscenes)):
+
+| Metric |                      Model                       |          Arch           |                                                  Link                                                   | Code                                                             | Comments          |
+|:------:|:------------------------------------------------:|:-----------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------|-------------------|
+|  FSVD  | [MinkowskiNet](https://arxiv.org/abs/1904.08755) |       Sparse UNet       | [Google Drive](https://drive.google.com/drive/folders/1oZIS9FlklCQ6dlh3TZ8Junir7QwgT-Me?usp=drive_link) | [./models/minkowskinet/model.py](./models/minkowskinet/model.py) | point cloud input |
+|  FPVD  |    [SPVCNN](https://arxiv.org/abs/2007.16100)    | Point-Voxel Sparse UNet | [Google Drive](https://drive.google.com/drive/folders/1F69RbprAoT6MOJ7iI0KHjxuq-tbeqGiR?usp=drive_link) | [./models/spvcnn/model.py](./models/spvcnn/model.py)             | point cloud input |
+
+
+## Usage
+
+1. Place the unzipped `pretrained_weights` folder under the root python directory **or** modify the `DEFAULT_ROOT` variable in the `__init__.py`.
+2. Prepare input data, including the synthesized samples and the reference dataset. **Note**: The reference data should be the **point clouds projected back from range images** instead of raw point clouds. 
+3. Specify the data type (`32` or `64`) and the metrics to evaluate. Options: `mmd`, `jsd`, `frid`, `fsvd`, `fpvd`, `cd`, `emd`.
+4. (Optional) If you want to compute `frid`, `fsvd` or `fpvd` metric, adjust the corresponding batch size through the `MODAL2BATCHSIZE` in file `__init__.py` according to your max GPU memory (default: ~24GB).
+5. Start evaluation and all results will print out!
+
+### Example:
+
+```
+from .eval_utils import evaluate
+
+data = '64'  # specify data type to evaluate
+metrics = ['mmd', 'jsd', 'frid', 'fsvd', 'fpvd']  # specify metrics to evaluate
+
+# list of np.float32 array
+# shape of each array: (#points, #dim=3), #dim: xyz coordinate (NOTE: no need to input remission)
+reference = ...
+samples = ...
+
+evaluate(reference, samples, metrics, data)
+```
+
+
+## Acknowledgement
+
+- The implementation of MinkowskiNet and SPVCNN is borrowed from [2DPASS](https://github.com/yanx27/2DPASS).
+- The implementation of RangeNet++ is borrowed from [the official RangeNet++ codebase](https://github.com/PRBonn/lidar-bonnetal).
+- The implementation of Chamfer Distance is adapted from [CD Pytorch Implementation](https://github.com/ThibaultGROUEIX/ChamferDistancePytorch) and Earth Mover's Distance from [MSN official repo](https://github.com/Colin97/MSN-Point-Cloud-Completion).
diff --git a/lidm/eval/__init__.py b/lidm/eval/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..b66df061c883b417576c2c1f6ae26f991c6c64c4
--- /dev/null
+++ b/lidm/eval/__init__.py
@@ -0,0 +1,62 @@
+"""
+@Author: Haoxi Ran
+@Date: 01/03/2024
+@Citation: Towards Realistic Scene Generation with LiDAR Diffusion Models
+
+"""
+
+import os
+
+import torch
+import yaml
+
+from lidm.utils.misc_utils import dict2namespace
+from ..modules.rangenet.model import Model as rangenet
+
+try:
+    from ..modules.spvcnn.model import Model as spvcnn
+    from ..modules.minkowskinet.model import Model as minkowskinet
+except:
+    print('To install torchsparse 1.4.0, please refer to https://github.com/mit-han-lab/torchsparse/tree/74099d10a51c71c14318bce63d6421f698b24f24')
+
+# user settings
+DEFAULT_ROOT = './pretrained_weights'
+MODAL2BATCHSIZE = {'range': 100, 'voxel': 50, 'point_voxel': 25}
+OUTPUT_TEMPLATE = 50 * '-' + '\n|' + 16 * ' ' + '{}:{:.4E}' + 17 * ' ' + '|\n' + 50 * '-'
+
+# eval settings (do not modify)
+VOXEL_SIZE = 0.05
+NUM_SECTORS = 16
+AGG_TYPE = 'depth'
+TYPE2DATASET = {'32': 'nuscenes', '64': 'kitti'}
+DATA_CONFIG = {'64': {'x': [-50, 50], 'y': [-50, 50], 'z': [-3, 1]},
+               '32': {'x': [-30, 30], 'y': [-30, 30], 'z': [-3, 6]}}
+MODALITY2MODEL = {'range': 'rangenet', 'voxel': 'minkowskinet', 'point_voxel': 'spvcnn'}
+DATASET_CONFIG = {'kitti': {'size': [64, 1024], 'fov': [3, -25], 'depth_range': [1.0, 56.0], 'depth_scale': 6},
+                  'nuscenes': {'size': [32, 1024], 'fov': [10, -30], 'depth_range': [1.0, 45.0]}}
+
+
+def build_model(dataset_name, model_name, device='cpu'):
+    # config
+    model_folder = os.path.join(DEFAULT_ROOT, dataset_name, model_name)
+
+    if not os.path.isdir(model_folder):
+        raise Exception('Not Available Pretrained Weights!')
+
+    config = yaml.safe_load(open(os.path.join(model_folder, 'config.yaml'), 'r'))
+    if model_name != 'rangenet':
+        config = dict2namespace(config)
+
+    # build model
+    model = eval(model_name)(config)
+
+    # load checkpoint
+    if model_name == 'rangenet':
+        model.load_pretrained_weights(model_folder)
+    else:
+        ckpt = torch.load(os.path.join(model_folder, 'model.ckpt'), map_location="cpu")
+        model.load_state_dict(ckpt['state_dict'], strict=False)
+    model.to(device)
+    model.eval()
+
+    return model
diff --git a/lidm/eval/compile.sh b/lidm/eval/compile.sh
new file mode 100644
index 0000000000000000000000000000000000000000..4d805f490ef9044309635b31b663c45bceaa4233
--- /dev/null
+++ b/lidm/eval/compile.sh
@@ -0,0 +1,9 @@
+#!/bin/sh
+
+cd modules/chamfer
+python setup.py build_ext --inplace
+
+cd ../emd
+python setup.py build_ext --inplace
+
+cd ..
diff --git a/lidm/eval/eval_utils.py b/lidm/eval/eval_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..bdfef3d58d5462d135d5f4518848530d826a2cad
--- /dev/null
+++ b/lidm/eval/eval_utils.py
@@ -0,0 +1,138 @@
+"""
+@Author: Haoxi Ran
+@Date: 01/03/2024
+@Citation: Towards Realistic Scene Generation with LiDAR Diffusion Models
+
+"""
+import multiprocessing
+from functools import partial
+
+import numpy as np
+from scipy.spatial.distance import jensenshannon
+from tqdm import tqdm
+
+from . import OUTPUT_TEMPLATE
+from .metric_utils import compute_logits, compute_pairwise_cd, \
+    compute_pairwise_emd, pcd2bev_sum, compute_pairwise_cd_batch, pcd2bev_bin
+from .fid_score import calculate_frechet_distance
+
+
+def evaluate(reference, samples, metrics, data):
+    # perceptual
+    if 'frid' in metrics:
+        compute_frid(reference, samples, data)
+    if 'fsvd' in metrics:
+        compute_fsvd(reference, samples, data)
+    if 'fpvd' in metrics:
+        compute_fpvd(reference, samples, data)
+
+    # reconstruction
+    if 'cd' in metrics:
+        compute_cd(reference, samples)
+    if 'emd' in metrics:
+        compute_emd(reference, samples)
+
+    # statistical
+    if 'jsd' in metrics:
+        compute_jsd(reference, samples, data)
+    if 'mmd' in metrics:
+        compute_mmd(reference, samples, data)
+
+
+def compute_cd(reference, samples):
+    """
+    Calculate score of Chamfer Distance (CD)
+
+    """
+    print('Evaluating (CD) ...')
+    results = []
+    for x, y in zip(reference, samples):
+        d = compute_pairwise_cd(x, y)
+        results.append(d)
+    score = sum(results) / len(results)
+    print(OUTPUT_TEMPLATE.format('CD  ', score))
+
+
+def compute_emd(reference, samples):
+    """
+    Calculate score of Earth Mover's Distance (EMD)
+
+    """
+    print('Evaluating (EMD) ...')
+    results = []
+    for x, y in zip(reference, samples):
+        d = compute_pairwise_emd(x, y)
+        results.append(d)
+    score = sum(results) / len(results)
+    print(OUTPUT_TEMPLATE.format('EMD ', score))
+
+
+def compute_mmd(reference, samples, data, dist='cd', verbose=True):
+    """
+    Calculate the score of Minimum Matching Distance (MMD)
+
+    """
+    print('Evaluating (MMD) ...')
+    assert dist in ['cd', 'emd']
+    reference, samples = pcd2bev_bin(data, reference, samples)
+    compute_dist_func = compute_pairwise_cd_batch if dist == 'cd' else compute_pairwise_emd
+    results = []
+    for r in tqdm(reference, disable=not verbose):
+        dists = compute_dist_func(r, samples)
+        results.append(min(dists))
+    score = sum(results) / len(results)
+    print(OUTPUT_TEMPLATE.format('MMD ', score))
+
+
+def compute_jsd(reference, samples, data):
+    """
+    Calculate the score of Jensen-Shannon Divergence (JSD)
+
+    """
+    print('Evaluating (JSD) ...')
+    reference, samples = pcd2bev_sum(data, reference, samples)
+    reference = (reference / np.sum(reference)).flatten()
+    samples = (samples / np.sum(samples)).flatten()
+    score = jensenshannon(reference, samples)
+    print(OUTPUT_TEMPLATE.format('JSD ', score))
+
+
+def compute_fd(reference, samples):
+    mu1, mu2 = np.mean(reference, axis=0), np.mean(samples, axis=0)
+    sigma1, sigma2 = np.cov(reference, rowvar=False), np.cov(samples, rowvar=False)
+    distance = calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
+    return distance
+
+
+def compute_frid(reference, samples, data):
+    """
+    Calculate the score of Fréchet Range Image Distance (FRID)
+
+    """
+    print('Evaluating (FRID) ...')
+    gt_logits, samples_logits = compute_logits(data, 'range', reference, samples)
+    score = compute_fd(gt_logits, samples_logits)
+    print(OUTPUT_TEMPLATE.format('FRID', score))
+
+
+def compute_fsvd(reference, samples, data):
+    """
+    Calculate the score of Fréchet Sparse Volume Distance (FSVD)
+
+    """
+    print('Evaluating (FSVD) ...')
+    gt_logits, samples_logits = compute_logits(data, 'voxel', reference, samples)
+    score = compute_fd(gt_logits, samples_logits)
+    print(OUTPUT_TEMPLATE.format('FSVD', score))
+
+
+def compute_fpvd(reference, samples, data):
+    """
+    Calculate the score of Fréchet Point-based Volume Distance (FPVD)
+
+    """
+    print('Evaluating (FPVD) ...')
+    gt_logits, samples_logits = compute_logits(data, 'point_voxel', reference, samples)
+    score = compute_fd(gt_logits, samples_logits)
+    print(OUTPUT_TEMPLATE.format('FPVD', score))
+
diff --git a/lidm/eval/fid_score.py b/lidm/eval/fid_score.py
new file mode 100644
index 0000000000000000000000000000000000000000..56fbb41329017636216cb6458b9cc82440152986
--- /dev/null
+++ b/lidm/eval/fid_score.py
@@ -0,0 +1,191 @@
+"""Calculates the Frechet Inception Distance (FID) to evalulate GANs
+The FID metric calculates the distance between two distributions of images.
+Typically, we have summary statistics (mean & covariance matrix) of one
+of these distributions, while the 2nd distribution is given by a GAN.
+When run as a stand-alone program, it compares the distribution of
+images that are stored as PNG/JPEG at a specified location with a
+distribution given by summary statistics (in pickle format).
+The FID is calculated by assuming that X_1 and X_2 are the activations of
+the pool_3 layer of the inception net for generated samples and real world
+samples respectively.
+See --help to see further details.
+Code adapted from https://github.com/bioinf-jku/TTUR to use PyTorch instead
+of Tensorflow
+Copyright 2018 Institute of Bioinformatics, JKU Linz
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+   http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License.
+"""
+import os
+import pathlib
+from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
+
+import numpy as np
+import torch
+import torchvision.transforms as TF
+from PIL import Image
+from scipy import linalg
+from torch.nn.functional import adaptive_avg_pool2d
+
+try:
+    from tqdm import tqdm
+except ImportError:
+    # If tqdm is not available, provide a mock version of it
+    def tqdm(x):
+        return x
+
+class ImagePathDataset(torch.utils.data.Dataset):
+    def __init__(self, files, transforms=None):
+        self.files = files
+        self.transforms = transforms
+
+    def __len__(self):
+        return len(self.files)
+
+    def __getitem__(self, i):
+        path = self.files[i]
+        img = Image.open(path).convert('RGB')
+        if self.transforms is not None:
+            img = self.transforms(img)
+        return img
+
+
+def get_activations(files, model, batch_size=50, dims=2048, device='cpu',
+                    num_workers=1):
+    """Calculates the activations of the pool_3 layer for all images.
+    Params:
+    -- files       : List of image files paths
+    -- model       : Instance of inception model
+    -- batch_size  : Batch size of images for the model to process at once.
+                     Make sure that the number of samples is a multiple of
+                     the batch size, otherwise some samples are ignored. This
+                     behavior is retained to match the original FID score
+                     implementation.
+    -- dims        : Dimensionality of features returned by Inception
+    -- device      : Device to run calculations
+    -- num_workers : Number of parallel dataloader workers
+    Returns:
+    -- A numpy array of dimension (num images, dims) that contains the
+       activations of the given tensor when feeding inception with the
+       query tensor.
+    """
+    model.eval()
+
+    if batch_size > len(files):
+        print(('Warning: batch size is bigger than the data size. '
+               'Setting batch size to data size'))
+        batch_size = len(files)
+
+    dataset = ImagePathDataset(files, transforms=TF.ToTensor())
+    dataloader = torch.utils.data.DataLoader(dataset,
+                                             batch_size=batch_size,
+                                             shuffle=False,
+                                             drop_last=False,
+                                             num_workers=num_workers)
+
+    pred_arr = np.empty((len(files), dims))
+
+    start_idx = 0
+
+    for batch in tqdm(dataloader):
+        batch = batch.to(device)
+
+        with torch.no_grad():
+            pred = model(batch)[0]
+
+        # If model output is not scalar, apply global spatial average pooling.
+        # This happens if you choose a dimensionality not equal 2048.
+        if pred.size(2) != 1 or pred.size(3) != 1:
+            pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
+
+        pred = pred.squeeze(3).squeeze(2).cpu().numpy()
+
+        pred_arr[start_idx:start_idx + pred.shape[0]] = pred
+
+        start_idx = start_idx + pred.shape[0]
+
+    return pred_arr
+
+
+def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
+    """Numpy implementation of the Frechet Distance.
+    The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
+    and X_2 ~ N(mu_2, C_2) is
+            d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
+    Stable version by Dougal J. Sutherland.
+    Params:
+    -- mu1   : Numpy array containing the activations of a layer of the
+               inception net (like returned by the function 'get_predictions')
+               for generated samples.
+    -- mu2   : The sample mean over activations, precalculated on an
+               representative data set.
+    -- sigma1: The covariance matrix over activations for generated samples.
+    -- sigma2: The covariance matrix over activations, precalculated on an
+               representative data set.
+    Returns:
+    --   : The Frechet Distance.
+    """
+
+    mu1 = np.atleast_1d(mu1)
+    mu2 = np.atleast_1d(mu2)
+
+    sigma1 = np.atleast_2d(sigma1)
+    sigma2 = np.atleast_2d(sigma2)
+
+    assert mu1.shape == mu2.shape, \
+        'Training and test mean vectors have different lengths'
+    assert sigma1.shape == sigma2.shape, \
+        'Training and test covariances have different dimensions'
+
+    diff = mu1 - mu2
+
+    # Product might be almost singular
+    covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
+    if not np.isfinite(covmean).all():
+        msg = ('fid calculation produces singular product; '
+               'adding %s to diagonal of cov estimates') % eps
+        print(msg)
+        offset = np.eye(sigma1.shape[0]) * eps
+        covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
+
+    # Numerical error might give slight imaginary component
+    if np.iscomplexobj(covmean):
+        if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
+            m = np.max(np.abs(covmean.imag))
+            raise ValueError('Imaginary component {}'.format(m))
+        covmean = covmean.real
+
+    tr_covmean = np.trace(covmean)
+
+    return (diff.dot(diff) + np.trace(sigma1)
+            + np.trace(sigma2) - 2 * tr_covmean)
+
+
+def calculate_activation_statistics(files, model, batch_size=50, dims=2048,
+                                    device='cpu', num_workers=1):
+    """Calculation of the statistics used by the FID.
+    Params:
+    -- files       : List of image files paths
+    -- model       : Instance of inception model
+    -- batch_size  : The images numpy array is split into batches with
+                     batch size batch_size. A reasonable batch size
+                     depends on the hardware.
+    -- dims        : Dimensionality of features returned by Inception
+    -- device      : Device to run calculations
+    -- num_workers : Number of parallel dataloader workers
+    Returns:
+    -- mu    : The mean over samples of the activations of the pool_3 layer of
+               the inception model.
+    -- sigma : The covariance matrix of the activations of the pool_3 layer of
+               the inception model.
+    """
+    act = get_activations(files, model, batch_size, dims, device, num_workers)
+    mu = np.mean(act, axis=0)
+    sigma = np.cov(act, rowvar=False)
+    return mu, sigma
diff --git a/lidm/eval/metric_utils.py b/lidm/eval/metric_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..30210fc653842b19956a038385a007dccf7993e0
--- /dev/null
+++ b/lidm/eval/metric_utils.py
@@ -0,0 +1,458 @@
+"""
+@Author: Haoxi Ran
+@Date: 01/03/2024
+@Citation: Towards Realistic Scene Generation with LiDAR Diffusion Models
+
+"""
+
+import math
+from itertools import repeat
+from typing import List, Tuple, Union
+import numpy as np
+import torch
+
+from . import build_model, VOXEL_SIZE, MODALITY2MODEL, MODAL2BATCHSIZE, DATASET_CONFIG, AGG_TYPE, NUM_SECTORS, \
+    TYPE2DATASET, DATA_CONFIG
+
+try:
+    from torchsparse import SparseTensor, PointTensor
+    from torchsparse.utils.collate import sparse_collate_fn
+    from .modules.chamfer3D.dist_chamfer_3D import chamfer_3DDist
+    from .modules.chamfer2D.dist_chamfer_2D import chamfer_2DDist
+    from .modules.emd.emd_module import emdModule
+except:
+    print(
+        'To install torchsparse 1.4.0, please refer to https://github.com/mit-han-lab/torchsparse/tree/74099d10a51c71c14318bce63d6421f698b24f24')
+
+
+def ravel_hash(x: np.ndarray) -> np.ndarray:
+    assert x.ndim == 2, x.shape
+
+    x = x - np.min(x, axis=0)
+    x = x.astype(np.uint64, copy=False)
+    xmax = np.max(x, axis=0).astype(np.uint64) + 1
+
+    h = np.zeros(x.shape[0], dtype=np.uint64)
+    for k in range(x.shape[1] - 1):
+        h += x[:, k]
+        h *= xmax[k + 1]
+    h += x[:, -1]
+    return h
+
+
+def sparse_quantize(coords, voxel_size: Union[float, Tuple[float, ...]] = 1, *, return_index: bool = False,
+                    return_inverse: bool = False) -> List[np.ndarray]:
+    """
+    Modified based on https://github.com/mit-han-lab/torchsparse/blob/462dea4a701f87a7545afb3616bf2cf53dd404f3/torchsparse/utils/quantize.py
+
+    """
+    if isinstance(voxel_size, (float, int)):
+        voxel_size = tuple(repeat(voxel_size, coords.shape[1]))
+    assert isinstance(voxel_size, tuple) and len(voxel_size) in [2, 3]  # support 2D and 3D coordinates only
+
+    voxel_size = np.array(voxel_size)
+    coords = np.floor(coords / voxel_size).astype(np.int32)
+
+    _, indices, inverse_indices = np.unique(
+        ravel_hash(coords), return_index=True, return_inverse=True
+    )
+    coords = coords[indices]
+
+    outputs = [coords]
+    if return_index:
+        outputs += [indices]
+    if return_inverse:
+        outputs += [inverse_indices]
+    return outputs[0] if len(outputs) == 1 else outputs
+
+
+def pcd2range(pcd, size, fov, depth_range, remission=None, labels=None, **kwargs):
+    # laser parameters
+    fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
+    fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
+    fov_range = abs(fov_down) + abs(fov_up)  # get field of view total in rad
+
+    # get depth (distance) of all points
+    depth = np.linalg.norm(pcd, 2, axis=1)
+
+    # mask points out of range
+    mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
+    depth, pcd = depth[mask], pcd[mask]
+
+    # get scan components
+    scan_x, scan_y, scan_z = pcd[:, 0], pcd[:, 1], pcd[:, 2]
+
+    # get angles of all points
+    yaw = -np.arctan2(scan_y, scan_x)
+    pitch = np.arcsin(scan_z / depth)
+
+    # get projections in image coords
+    proj_x = 0.5 * (yaw / np.pi + 1.0)  # in [0.0, 1.0]
+    proj_y = 1.0 - (pitch + abs(fov_down)) / fov_range  # in [0.0, 1.0]
+
+    # scale to image size using angular resolution
+    proj_x *= size[1]  # in [0.0, W]
+    proj_y *= size[0]  # in [0.0, H]
+
+    # round and clamp for use as index
+    proj_x = np.maximum(0, np.minimum(size[1] - 1, np.floor(proj_x))).astype(np.int32)  # in [0,W-1]
+    proj_y = np.maximum(0, np.minimum(size[0] - 1, np.floor(proj_y))).astype(np.int32)  # in [0,H-1]
+
+    # order in decreasing depth
+    order = np.argsort(depth)[::-1]
+    proj_x, proj_y = proj_x[order], proj_y[order]
+
+    # project depth
+    depth = depth[order]
+    proj_range = np.full(size, -1, dtype=np.float32)
+    proj_range[proj_y, proj_x] = depth
+
+    # project point feature
+    if remission is not None:
+        remission = remission[mask][order]
+        proj_feature = np.full(size, -1, dtype=np.float32)
+        proj_feature[proj_y, proj_x] = remission
+    elif labels is not None:
+        labels = labels[mask][order]
+        proj_feature = np.full(size, 0, dtype=np.float32)
+        proj_feature[proj_y, proj_x] = labels
+    else:
+        proj_feature = None
+
+    return proj_range, proj_feature
+
+
+def range2xyz(range_img, fov, depth_range, depth_scale, log_scale=True, **kwargs):
+    # laser parameters
+    size = range_img.shape
+    fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
+    fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
+    fov_range = abs(fov_down) + abs(fov_up)  # get field of view total in rad
+
+    # inverse transform from depth
+    if log_scale:
+        depth = (np.exp2(range_img * depth_scale) - 1)
+    else:
+        depth = range_img
+
+    scan_x, scan_y = np.meshgrid(np.arange(size[1]), np.arange(size[0]))
+    scan_x = scan_x.astype(np.float64) / size[1]
+    scan_y = scan_y.astype(np.float64) / size[0]
+
+    yaw = np.pi * (scan_x * 2 - 1)
+    pitch = (1.0 - scan_y) * fov_range - abs(fov_down)
+
+    xyz = -np.ones((3, *size))
+    xyz[0] = np.cos(yaw) * np.cos(pitch) * depth
+    xyz[1] = -np.sin(yaw) * np.cos(pitch) * depth
+    xyz[2] = np.sin(pitch) * depth
+
+    # mask out invalid points
+    mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
+    xyz[:, ~mask] = -1
+
+    return xyz
+
+
+def pcd2voxel(pcd):
+    pcd_voxel = np.round(pcd / VOXEL_SIZE)
+    pcd_voxel = pcd_voxel - pcd_voxel.min(0, keepdims=1)
+    feat = np.concatenate((pcd, -np.ones((pcd.shape[0], 1))), axis=1)  # -1 for remission placeholder
+    _, inds, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
+
+    feat = torch.FloatTensor(feat[inds])
+    pcd_voxel = torch.LongTensor(pcd_voxel[inds])
+    lidar = SparseTensor(feat, pcd_voxel)
+    output = {'lidar': lidar}
+    return output
+
+
+def pcd2voxel_full(data_type, *args):
+    config = DATA_CONFIG[data_type]
+    x_range, y_range, z_range = config['x'], config['y'], config['z']
+    vol_shape = (math.ceil((x_range[1] - x_range[0]) / VOXEL_SIZE), math.ceil((y_range[1] - y_range[0]) / VOXEL_SIZE),
+                 math.ceil((z_range[1] - z_range[0]) / VOXEL_SIZE))
+    min_bound = (math.ceil((x_range[0]) / VOXEL_SIZE), math.ceil((y_range[0]) / VOXEL_SIZE),
+                 math.ceil((z_range[0]) / VOXEL_SIZE))
+
+    output = tuple()
+    for data in args:
+        volume_list = []
+        for pcd in data:
+            # mask out invalid points
+            mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
+            mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
+            mask_z = np.logical_and(pcd[:, 2] > z_range[0], pcd[:, 2] < z_range[1])
+            mask = mask_x & mask_y & mask_z
+            pcd = pcd[mask]
+
+            # voxelize
+            pcd_voxel = np.floor(pcd / VOXEL_SIZE)
+            _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
+            pcd_voxel = pcd_voxel[indices]
+            pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)
+
+            # 2D bev grid
+            vol = np.zeros(vol_shape, dtype=np.float32)
+            vol[pcd_voxel[:, 0], pcd_voxel[:, 1], pcd_voxel[:, 2]] = 1
+            volume_list.append(vol)
+        output += (volume_list,)
+    return output
+
+
+# def pcd2bev_full(data_type, *args, voxel_size=VOXEL_SIZE):
+#     config = DATA_CONFIG[data_type]
+#     x_range, y_range = config['x'], config['y']
+#     vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
+#     min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))
+#
+#     output = tuple()
+#     for data in args:
+#         volume_list = []
+#         for pcd in data:
+#             # mask out invalid points
+#             mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
+#             mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
+#             mask = mask_x & mask_y
+#             pcd = pcd[mask][:, :2]  # keep x,y coord
+#
+#             # voxelize
+#             pcd_voxel = np.floor(pcd / voxel_size)
+#             _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
+#             pcd_voxel = pcd_voxel[indices]
+#             pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)
+#
+#             # 2D bev grid
+#             vol = np.zeros(vol_shape, dtype=np.float32)
+#             vol[pcd_voxel[:, 0], pcd_voxel[:, 1]] = 1
+#             volume_list.append(vol)
+#         output += (volume_list,)
+#     return output
+
+
+def pcd2bev_sum(data_type, *args, voxel_size=VOXEL_SIZE):
+    config = DATA_CONFIG[data_type]
+    x_range, y_range = config['x'], config['y']
+    vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
+    min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))
+
+    output = tuple()
+    for data in args:
+        volume_sum = np.zeros(vol_shape, np.float32)
+        for pcd in data:
+            # mask out invalid points
+            mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
+            mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
+            mask = mask_x & mask_y
+            pcd = pcd[mask][:, :2]  # keep x,y coord
+
+            # voxelize
+            pcd_voxel = np.floor(pcd / voxel_size)
+            _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
+            pcd_voxel = pcd_voxel[indices]
+            pcd_voxel = (pcd_voxel - min_bound).astype(np.int32)
+
+            # summation
+            volume_sum[pcd_voxel[:, 0], pcd_voxel[:, 1]] += 1.
+        output += (volume_sum,)
+    return output
+
+
+def pcd2bev_bin(data_type, *args, voxel_size=0.5):
+    config = DATA_CONFIG[data_type]
+    x_range, y_range = config['x'], config['y']
+    vol_shape = (math.ceil((x_range[1] - x_range[0]) / voxel_size), math.ceil((y_range[1] - y_range[0]) / voxel_size))
+    min_bound = (math.ceil((x_range[0]) / voxel_size), math.ceil((y_range[0]) / voxel_size))
+
+    output = tuple()
+    for data in args:
+        pcd_list = []
+        for pcd in data:
+            # mask out invalid points
+            mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
+            mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
+            mask = mask_x & mask_y
+            pcd = pcd[mask][:, :2]  # keep x,y coord
+
+            # voxelize
+            pcd_voxel = np.floor(pcd / voxel_size)
+            _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
+            pcd_voxel = pcd_voxel[indices]
+            pcd_voxel = ((pcd_voxel - min_bound) / vol_shape).astype(np.float32)
+            pcd_list.append(pcd_voxel)
+        output += (pcd_list,)
+    return output
+
+
+def bev_sample(data_type, *args, voxel_size=0.5):
+    config = DATA_CONFIG[data_type]
+    x_range, y_range = config['x'], config['y']
+
+    output = tuple()
+    for data in args:
+        pcd_list = []
+        for pcd in data:
+            # mask out invalid points
+            mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
+            mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
+            mask = mask_x & mask_y
+            pcd = pcd[mask][:, :2]  # keep x,y coord
+
+            # voxelize
+            pcd_voxel = np.floor(pcd / voxel_size)
+            _, indices, inverse_map = sparse_quantize(pcd_voxel, 1, return_index=True, return_inverse=True)
+            pcd = pcd[indices]
+            pcd_list.append(pcd)
+        output += (pcd_list,)
+    return output
+
+
+def preprocess_pcd(pcd, **kwargs):
+    depth = np.linalg.norm(pcd, 2, axis=1)
+    mask = np.logical_and(depth > kwargs['depth_range'][0], depth < kwargs['depth_range'][1])
+    pcd = pcd[mask]
+    return pcd
+
+
+def preprocess_range(pcd, **kwargs):
+    depth_img = pcd2range(pcd, **kwargs)[0]
+    xyz_img = range2xyz(depth_img, log_scale=False, **kwargs)
+    depth_img = depth_img[None]
+    img = np.vstack([depth_img, xyz_img])
+    return img
+
+
+def batch2list(batch_dict, agg_type='depth', **kwargs):
+    """
+    Aggregation Type: Default 'depth', ['all', 'sector', 'depth']
+    """
+    output_list = []
+    batch_indices = batch_dict['batch_indices']
+    for b_idx in range(batch_indices.max() + 1):
+        # avg all
+        if agg_type == 'all':
+            logits = batch_dict['logits'][batch_indices == b_idx].mean(0)
+
+        # avg on sectors
+        elif agg_type == 'sector':
+            logits = batch_dict['logits'][batch_indices == b_idx]
+            coords = batch_dict['coords'][batch_indices == b_idx].float()
+            coords = coords - coords.mean(0)
+            angle = torch.atan2(coords[:, 1], coords[:, 0])  # [-pi, pi]
+            sector_range = torch.linspace(-np.pi - 1e-4, np.pi + 1e-4, NUM_SECTORS + 1)
+            logits_list = []
+            for i in range(NUM_SECTORS):
+                sector_indices = torch.where((angle >= sector_range[i]) & (angle < sector_range[i + 1]))[0]
+                sector_logits = logits[sector_indices].mean(0)
+                sector_logits = torch.nan_to_num(sector_logits, 0.)
+                logits_list.append(sector_logits)
+            logits = torch.cat(logits_list)  # dim: 768
+
+        # avg by depth
+        elif agg_type == 'depth':
+            logits = batch_dict['logits'][batch_indices == b_idx]
+            coords = batch_dict['coords'][batch_indices == b_idx].float()
+            coords = coords - coords.mean(0)
+            bev_depth = torch.norm(coords, dim=-1) * VOXEL_SIZE
+            sector_range = torch.linspace(kwargs['depth_range'][0] + 3, kwargs['depth_range'][1], NUM_SECTORS + 1)
+            sector_range[0] = 0.
+            logits_list = []
+            for i in range(NUM_SECTORS):
+                sector_indices = torch.where((bev_depth >= sector_range[i]) & (bev_depth < sector_range[i + 1]))[0]
+                sector_logits = logits[sector_indices].mean(0)
+                sector_logits = torch.nan_to_num(sector_logits, 0.)
+                logits_list.append(sector_logits)
+            logits = torch.cat(logits_list)  # dim: 768
+
+        else:
+            raise NotImplementedError
+
+        output_list.append(logits.detach().cpu().numpy())
+    return output_list
+
+
+def compute_logits(data_type, modality, *args):
+    assert data_type in ['32', '64']
+    assert modality in ['range', 'voxel', 'point_voxel']
+    is_voxel = 'voxel' in modality
+    dataset_name = TYPE2DATASET[data_type]
+    dataset_config = DATASET_CONFIG[dataset_name]
+    bs = MODAL2BATCHSIZE[modality]
+
+    model = build_model(dataset_name, MODALITY2MODEL[modality], device='cuda')
+
+    output = tuple()
+    for data in args:
+        all_logits_list = []
+        for i in range(math.ceil(len(data) / bs)):
+            batch = data[i * bs:(i + 1) * bs]
+            if is_voxel:
+                batch = [pcd2voxel(preprocess_pcd(pcd, **dataset_config)) for pcd in batch]
+                batch = sparse_collate_fn(batch)
+                batch = {k: v.cuda() if isinstance(v, (torch.Tensor, SparseTensor, PointTensor)) else v for k, v in
+                         batch.items()}
+                with torch.no_grad():
+                    batch_out = model(batch, return_final_logits=True)
+                    batch_out = batch2list(batch_out, AGG_TYPE, **dataset_config)
+                    all_logits_list.extend(batch_out)
+            else:
+                batch = [preprocess_range(pcd, **dataset_config) for pcd in batch]
+                batch = torch.from_numpy(np.stack(batch)).float().cuda()
+                with torch.no_grad():
+                    batch_out = model(batch, return_final_logits=True, agg_type=AGG_TYPE)
+                    all_logits_list.append(batch_out)
+        if is_voxel:
+            all_logits = np.stack(all_logits_list)
+        else:
+            all_logits = np.vstack(all_logits_list)
+        output += (all_logits,)
+
+    del model, batch, batch_out
+    torch.cuda.empty_cache()
+    return output
+
+
+def compute_pairwise_cd(x, y, module=None):
+    if module is None:
+        module = chamfer_3DDist()
+    if x.ndim == 2 and y.ndim == 2:
+        x, y = x[None], y[None]
+    x, y = torch.from_numpy(x).cuda(), torch.from_numpy(y).cuda()
+    dist1, dist2, _, _ = module(x, y)
+    dist = (dist1.mean() + dist2.mean()) / 2
+    return dist.item()
+
+
+def compute_pairwise_cd_batch(reference, samples):
+    ndim = reference.ndim
+    assert ndim in [2, 3]
+    module = chamfer_3DDist() if ndim == 3 else chamfer_2DDist()
+    len_r, len_s = reference.shape[0], [s.shape[0] for s in samples]
+    max_len = max([len_r] + len_s)
+    reference = torch.from_numpy(
+        np.vstack([reference, np.ones((max_len - reference.shape[0], ndim), dtype=np.float32) * 1e6])).cuda()
+    samples = [np.vstack([s, np.ones((max_len - s.shape[0], ndim), dtype=np.float32) * 1e6]) for s in samples]
+    samples = torch.from_numpy(np.stack(samples)).cuda()
+    reference = reference.expand_as(samples)
+    dist_r, dist_s, _, _ = module(reference, samples)
+
+    results = []
+    for i in range(samples.shape[0]):
+        dist1, dist2, len1, len2 = dist_r[i], dist_s[i], len_r, len_s[i]
+        dist = (dist1[:len1].mean() + dist2[:len2].mean()) / 2.
+        results.append(dist.item())
+    return results
+
+
+def compute_pairwise_emd(x, y, module=None):
+    if module is None:
+        module = emdModule()
+    n_points = min(x.shape[0], y.shape[0])
+    n_points = n_points - n_points % 1024
+    x, y = x[:n_points], y[:n_points]
+    if x.ndim == 2 and y.ndim == 2:
+        x, y = x[None], y[None]
+    x, y = torch.from_numpy(x).cuda(), torch.from_numpy(y).cuda()
+    dist, _ = module(x, y, 0.005, 50)
+    dist = torch.sqrt(dist).mean()
+    return dist.item()
diff --git a/lidm/eval/models/__init__.py b/lidm/eval/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/models/minkowskinet/__init__.py b/lidm/eval/models/minkowskinet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/models/minkowskinet/model.py b/lidm/eval/models/minkowskinet/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..daa36a5009e96f3331653341c6b185627d688a19
--- /dev/null
+++ b/lidm/eval/models/minkowskinet/model.py
@@ -0,0 +1,141 @@
+import torch
+import torch.nn as nn
+
+try:
+    import torchsparse
+    import torchsparse.nn as spnn
+    from ..ts import basic_blocks
+except ImportError:
+    raise Exception('Required ts lib. Reference: https://github.com/mit-han-lab/torchsparse/tree/v1.4.0')
+
+
+class Model(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+
+        cr = config.model_params.cr
+        cs = config.model_params.layer_num
+        cs = [int(cr * x) for x in cs]
+
+        self.pres = self.vres = config.model_params.voxel_size
+        self.num_classes = config.model_params.num_class
+
+        self.stem = nn.Sequential(
+            spnn.Conv3d(config.model_params.input_dims, cs[0], kernel_size=3, stride=1),
+            spnn.BatchNorm(cs[0]), spnn.ReLU(True),
+            spnn.Conv3d(cs[0], cs[0], kernel_size=3, stride=1),
+            spnn.BatchNorm(cs[0]), spnn.ReLU(True))
+
+        self.stage1 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage2 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage3 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[2], cs[2], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[2], cs[3], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage4 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[3], cs[3], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[3], cs[4], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1),
+        )
+
+        self.up1 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[4], cs[5], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[5] + cs[3], cs[5], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[5], cs[5], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up2 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[5], cs[6], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[6] + cs[2], cs[6], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[6], cs[6], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up3 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[6], cs[7], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[7] + cs[1], cs[7], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[7], cs[7], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up4 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[7], cs[8], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[8] + cs[0], cs[8], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[8], cs[8], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.classifier = nn.Sequential(nn.Linear(cs[8], self.num_classes))
+
+        self.weight_initialization()
+        self.dropout = nn.Dropout(0.3, True)
+
+    def weight_initialization(self):
+        for m in self.modules():
+            if isinstance(m, nn.BatchNorm1d):
+                nn.init.constant_(m.weight, 1)
+                nn.init.constant_(m.bias, 0)
+
+    def forward(self, data_dict, return_logits=False, return_final_logits=False):
+        x = data_dict['lidar']
+        x.C = x.C.int()
+
+        x0 = self.stem(x)
+        x1 = self.stage1(x0)
+        x2 = self.stage2(x1)
+        x3 = self.stage3(x2)
+        x4 = self.stage4(x3)
+
+        if return_logits:
+            output_dict = dict()
+            output_dict['logits'] = x4.F
+            output_dict['batch_indices'] = x4.C[:, -1]
+            return output_dict
+
+        y1 = self.up1[0](x4)
+        y1 = torchsparse.cat([y1, x3])
+        y1 = self.up1[1](y1)
+
+        y2 = self.up2[0](y1)
+        y2 = torchsparse.cat([y2, x2])
+        y2 = self.up2[1](y2)
+
+        y3 = self.up3[0](y2)
+        y3 = torchsparse.cat([y3, x1])
+        y3 = self.up3[1](y3)
+
+        y4 = self.up4[0](y3)
+        y4 = torchsparse.cat([y4, x0])
+        y4 = self.up4[1](y4)
+        if return_final_logits:
+            output_dict = dict()
+            output_dict['logits'] = y4.F
+            output_dict['coords'] = y4.C[:, :3]
+            output_dict['batch_indices'] = y4.C[:, -1]
+            return output_dict
+
+        output = self.classifier(y4.F)
+        data_dict['output'] = output.F
+
+        return data_dict
diff --git a/lidm/eval/models/rangenet/__init__.py b/lidm/eval/models/rangenet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/models/rangenet/model.py b/lidm/eval/models/rangenet/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..752fae9effd476a6bff255e0063675d1cc2f72e2
--- /dev/null
+++ b/lidm/eval/models/rangenet/model.py
@@ -0,0 +1,372 @@
+#!/usr/bin/env python3
+# This file is covered by the LICENSE file in the root of this project.
+from collections import OrderedDict
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class BasicBlock(nn.Module):
+    def __init__(self, inplanes, planes, bn_d=0.1):
+        super(BasicBlock, self).__init__()
+        self.conv1 = nn.Conv2d(inplanes, planes[0], kernel_size=1,
+                               stride=1, padding=0, bias=False)
+        self.bn1 = nn.BatchNorm2d(planes[0], momentum=bn_d)
+        self.relu1 = nn.LeakyReLU(0.1)
+        self.conv2 = nn.Conv2d(planes[0], planes[1], kernel_size=3,
+                               stride=1, padding=1, bias=False)
+        self.bn2 = nn.BatchNorm2d(planes[1], momentum=bn_d)
+        self.relu2 = nn.LeakyReLU(0.1)
+
+    def forward(self, x):
+        residual = x
+
+        out = self.conv1(x)
+        out = self.bn1(out)
+        out = self.relu1(out)
+
+        out = self.conv2(out)
+        out = self.bn2(out)
+        out = self.relu2(out)
+
+        out += residual
+        return out
+
+
+# ******************************************************************************
+
+# number of layers per model
+model_blocks = {
+    21: [1, 1, 2, 2, 1],
+    53: [1, 2, 8, 8, 4],
+}
+
+
+class Backbone(nn.Module):
+    """
+       Class for DarknetSeg. Subclasses PyTorch's own "nn" module
+    """
+
+    def __init__(self, params):
+        super(Backbone, self).__init__()
+        self.use_range = params["input_depth"]["range"]
+        self.use_xyz = params["input_depth"]["xyz"]
+        self.use_remission = params["input_depth"]["remission"]
+        self.drop_prob = params["dropout"]
+        self.bn_d = params["bn_d"]
+        self.OS = params["OS"]
+        self.layers = params["extra"]["layers"]
+
+        # input depth calc
+        self.input_depth = 0
+        self.input_idxs = []
+        if self.use_range:
+            self.input_depth += 1
+            self.input_idxs.append(0)
+        if self.use_xyz:
+            self.input_depth += 3
+            self.input_idxs.extend([1, 2, 3])
+        if self.use_remission:
+            self.input_depth += 1
+            self.input_idxs.append(4)
+
+        # stride play
+        self.strides = [2, 2, 2, 2, 2]
+        # check current stride
+        current_os = 1
+        for s in self.strides:
+            current_os *= s
+
+        # make the new stride
+        if self.OS > current_os:
+            print("Can't do OS, ", self.OS,
+                  " because it is bigger than original ", current_os)
+        else:
+            # redo strides according to needed stride
+            for i, stride in enumerate(reversed(self.strides), 0):
+                if int(current_os) != self.OS:
+                    if stride == 2:
+                        current_os /= 2
+                        self.strides[-1 - i] = 1
+                    if int(current_os) == self.OS:
+                        break
+
+        # check that darknet exists
+        assert self.layers in model_blocks.keys()
+
+        # generate layers depending on darknet type
+        self.blocks = model_blocks[self.layers]
+
+        # input layer
+        self.conv1 = nn.Conv2d(self.input_depth, 32, kernel_size=3,
+                               stride=1, padding=1, bias=False)
+        self.bn1 = nn.BatchNorm2d(32, momentum=self.bn_d)
+        self.relu1 = nn.LeakyReLU(0.1)
+
+        # encoder
+        self.enc1 = self._make_enc_layer(BasicBlock, [32, 64], self.blocks[0],
+                                         stride=self.strides[0], bn_d=self.bn_d)
+        self.enc2 = self._make_enc_layer(BasicBlock, [64, 128], self.blocks[1],
+                                         stride=self.strides[1], bn_d=self.bn_d)
+        self.enc3 = self._make_enc_layer(BasicBlock, [128, 256], self.blocks[2],
+                                         stride=self.strides[2], bn_d=self.bn_d)
+        self.enc4 = self._make_enc_layer(BasicBlock, [256, 512], self.blocks[3],
+                                         stride=self.strides[3], bn_d=self.bn_d)
+        self.enc5 = self._make_enc_layer(BasicBlock, [512, 1024], self.blocks[4],
+                                         stride=self.strides[4], bn_d=self.bn_d)
+
+        # for a bit of fun
+        self.dropout = nn.Dropout2d(self.drop_prob)
+
+        # last channels
+        self.last_channels = 1024
+
+    # make layer useful function
+    def _make_enc_layer(self, block, planes, blocks, stride, bn_d=0.1):
+        layers = []
+
+        #  downsample
+        layers.append(("conv", nn.Conv2d(planes[0], planes[1],
+                                         kernel_size=3,
+                                         stride=[1, stride], dilation=1,
+                                         padding=1, bias=False)))
+        layers.append(("bn", nn.BatchNorm2d(planes[1], momentum=bn_d)))
+        layers.append(("relu", nn.LeakyReLU(0.1)))
+
+        #  blocks
+        inplanes = planes[1]
+        for i in range(0, blocks):
+            layers.append(("residual_{}".format(i),
+                           block(inplanes, planes, bn_d)))
+
+        return nn.Sequential(OrderedDict(layers))
+
+    def run_layer(self, x, layer, skips, os):
+        y = layer(x)
+        if y.shape[2] < x.shape[2] or y.shape[3] < x.shape[3]:
+            skips[os] = x.detach()
+            os *= 2
+        x = y
+        return x, skips, os
+
+    def forward(self, x, return_logits=False, return_list=None):
+        # filter input
+        x = x[:, self.input_idxs]
+
+        # run cnn
+        # store for skip connections
+        skips = {}
+        out_dict = {}
+        os = 1
+
+        # first layer
+        x, skips, os = self.run_layer(x, self.conv1, skips, os)
+        x, skips, os = self.run_layer(x, self.bn1, skips, os)
+        x, skips, os = self.run_layer(x, self.relu1, skips, os)
+        if return_list and 'enc_0' in return_list:
+            out_dict['enc_0'] = x.detach().cpu()  # 32, 64, 1024
+
+        # all encoder blocks with intermediate dropouts
+        x, skips, os = self.run_layer(x, self.enc1, skips, os)
+        if return_list and 'enc_1' in return_list:
+            out_dict['enc_1'] = x.detach().cpu()  # 64, 64, 512
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        x, skips, os = self.run_layer(x, self.enc2, skips, os)
+        if return_list and 'enc_2' in return_list:
+            out_dict['enc_2'] = x.detach().cpu()  # 128, 64, 256
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        x, skips, os = self.run_layer(x, self.enc3, skips, os)
+        if return_list and 'enc_3' in return_list:
+            out_dict['enc_3'] = x.detach().cpu()  # 256, 64, 128
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        x, skips, os = self.run_layer(x, self.enc4, skips, os)
+        if return_list and 'enc_4' in return_list:
+            out_dict['enc_4'] = x.detach().cpu()  # 512, 64, 64
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        x, skips, os = self.run_layer(x, self.enc5, skips, os)
+        if return_list and 'enc_5' in return_list:
+            out_dict['enc_5'] = x.detach().cpu()  # 1024, 64, 32
+        if return_logits:
+            return x
+
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        if return_list is not None:
+            return x, skips, out_dict
+        return x, skips
+
+    def get_last_depth(self):
+        return self.last_channels
+
+    def get_input_depth(self):
+        return self.input_depth
+
+
+class Decoder(nn.Module):
+    """
+       Class for DarknetSeg. Subclasses PyTorch's own "nn" module
+    """
+
+    def __init__(self, params, OS=32, feature_depth=1024):
+        super(Decoder, self).__init__()
+        self.backbone_OS = OS
+        self.backbone_feature_depth = feature_depth
+        self.drop_prob = params["dropout"]
+        self.bn_d = params["bn_d"]
+        self.index = 0
+
+        # stride play
+        self.strides = [2, 2, 2, 2, 2]
+        # check current stride
+        current_os = 1
+        for s in self.strides:
+            current_os *= s
+        # redo strides according to needed stride
+        for i, stride in enumerate(self.strides):
+            if int(current_os) != self.backbone_OS:
+                if stride == 2:
+                    current_os /= 2
+                    self.strides[i] = 1
+                if int(current_os) == self.backbone_OS:
+                    break
+
+        # decoder
+        self.dec5 = self._make_dec_layer(BasicBlock,
+                                         [self.backbone_feature_depth, 512],
+                                         bn_d=self.bn_d,
+                                         stride=self.strides[0])
+        self.dec4 = self._make_dec_layer(BasicBlock, [512, 256], bn_d=self.bn_d,
+                                         stride=self.strides[1])
+        self.dec3 = self._make_dec_layer(BasicBlock, [256, 128], bn_d=self.bn_d,
+                                         stride=self.strides[2])
+        self.dec2 = self._make_dec_layer(BasicBlock, [128, 64], bn_d=self.bn_d,
+                                         stride=self.strides[3])
+        self.dec1 = self._make_dec_layer(BasicBlock, [64, 32], bn_d=self.bn_d,
+                                         stride=self.strides[4])
+
+        # layer list to execute with skips
+        self.layers = [self.dec5, self.dec4, self.dec3, self.dec2, self.dec1]
+
+        # for a bit of fun
+        self.dropout = nn.Dropout2d(self.drop_prob)
+
+        # last channels
+        self.last_channels = 32
+
+    def _make_dec_layer(self, block, planes, bn_d=0.1, stride=2):
+        layers = []
+
+        #  downsample
+        if stride == 2:
+            layers.append(("upconv", nn.ConvTranspose2d(planes[0], planes[1],
+                                                        kernel_size=[1, 4], stride=[1, 2],
+                                                        padding=[0, 1])))
+        else:
+            layers.append(("conv", nn.Conv2d(planes[0], planes[1],
+                                             kernel_size=3, padding=1)))
+        layers.append(("bn", nn.BatchNorm2d(planes[1], momentum=bn_d)))
+        layers.append(("relu", nn.LeakyReLU(0.1)))
+
+        #  blocks
+        layers.append(("residual", block(planes[1], planes, bn_d)))
+
+        return nn.Sequential(OrderedDict(layers))
+
+    def run_layer(self, x, layer, skips, os):
+        feats = layer(x)  # up
+        if feats.shape[-1] > x.shape[-1]:
+            os //= 2  # match skip
+            feats = feats + skips[os].detach()  # add skip
+        x = feats
+        return x, skips, os
+
+    def forward(self, x, skips, return_logits=False, return_list=None):
+        os = self.backbone_OS
+        out_dict = {}
+
+        # run layers
+        x, skips, os = self.run_layer(x, self.dec5, skips, os)
+        if return_list and 'dec_4' in return_list:
+            out_dict['dec_4'] = x.detach().cpu()  # 512, 64, 64
+        x, skips, os = self.run_layer(x, self.dec4, skips, os)
+        if return_list and 'dec_3' in return_list:
+            out_dict['dec_3'] = x.detach().cpu()  # 256, 64, 128
+        x, skips, os = self.run_layer(x, self.dec3, skips, os)
+        if return_list and 'dec_2' in return_list:
+            out_dict['dec_2'] = x.detach().cpu()  # 128, 64, 256
+        x, skips, os = self.run_layer(x, self.dec2, skips, os)
+        if return_list and 'dec_1' in return_list:
+            out_dict['dec_1'] = x.detach().cpu()  # 64, 64, 512
+        x, skips, os = self.run_layer(x, self.dec1, skips, os)
+        if return_list and 'dec_0' in return_list:
+            out_dict['dec_0'] = x.detach().cpu()  # 32, 64, 1024
+
+        logits = torch.clone(x).detach()
+        x = self.dropout(x)
+
+        if return_logits:
+            return x, logits
+        if return_list is not None:
+            return out_dict
+        return x
+
+    def get_last_depth(self):
+        return self.last_channels
+
+
+class Model(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.config = config
+        self.backbone = Backbone(params=self.config["backbone"])
+        self.decoder = Decoder(params=self.config["decoder"], OS=self.config["backbone"]["OS"],
+                               feature_depth=self.backbone.get_last_depth())
+
+    def load_pretrained_weights(self, path):
+        w_dict = torch.load(path + "/backbone",
+                            map_location=lambda storage, loc: storage)
+        self.backbone.load_state_dict(w_dict, strict=True)
+        w_dict = torch.load(path + "/segmentation_decoder",
+                            map_location=lambda storage, loc: storage)
+        self.decoder.load_state_dict(w_dict, strict=True)
+
+    def forward(self, x, return_logits=False, return_final_logits=False, return_list=None, agg_type='depth'):
+        if return_logits:
+            logits = self.backbone(x, return_logits)
+            logits = F.adaptive_avg_pool2d(logits, (1, 1)).squeeze()
+            logits = torch.clone(logits).detach().cpu().numpy()
+            return logits
+        elif return_list is not None:
+            x, skips, enc_dict = self.backbone(x, return_list=return_list)
+            dec_dict = self.decoder(x, skips, return_list=return_list)
+            out_dict = {**enc_dict, **dec_dict}
+            return out_dict
+        elif return_final_logits:
+            assert agg_type in ['all', 'sector', 'depth']
+            y, skips = self.backbone(x)
+            y, logits = self.decoder(y, skips, True)
+
+            B, C, H, W = logits.shape
+            N = 16
+
+            # avg all
+            if agg_type == 'all':
+                logits = logits.mean([2, 3])
+            # avg in patch
+            elif agg_type == 'sector':
+                logits = logits.view(B, C, H, N, W // N).mean([2, 4]).reshape(B, -1)
+            # avg in row
+            elif agg_type == 'depth':
+                logits = logits.view(B, C, N, H // N, W).mean([3, 4]).reshape(B, -1)
+
+            logits = torch.clone(logits).detach().cpu().numpy()
+            return logits
+        else:
+            y, skips = self.backbone(x)
+            y = self.decoder(y, skips, False)
+            return y
diff --git a/lidm/eval/models/spvcnn/__init__.py b/lidm/eval/models/spvcnn/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/models/spvcnn/model.py b/lidm/eval/models/spvcnn/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd7793f8e81cef35f331c0c2c70062023999e83a
--- /dev/null
+++ b/lidm/eval/models/spvcnn/model.py
@@ -0,0 +1,179 @@
+import torch.nn as nn
+
+try:
+    import torchsparse
+    import torchsparse.nn as spnn
+    from torchsparse import PointTensor
+    from ..ts.utils import initial_voxelize, point_to_voxel, voxel_to_point
+    from ..ts import basic_blocks
+except ImportError:
+    raise Exception('Required torchsparse lib. Reference: https://github.com/mit-han-lab/torchsparse/tree/v1.4.0')
+
+
+class Model(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        cr = config.model_params.cr
+        cs = config.model_params.layer_num
+        cs = [int(cr * x) for x in cs]
+
+        self.pres = self.vres = config.model_params.voxel_size
+        self.num_classes = config.model_params.num_class
+
+        self.stem = nn.Sequential(
+            spnn.Conv3d(config.model_params.input_dims, cs[0], kernel_size=3, stride=1),
+            spnn.BatchNorm(cs[0]), spnn.ReLU(True),
+            spnn.Conv3d(cs[0], cs[0], kernel_size=3, stride=1),
+            spnn.BatchNorm(cs[0]), spnn.ReLU(True))
+
+        self.stage1 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage2 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage3 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[2], cs[2], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[2], cs[3], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage4 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[3], cs[3], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[3], cs[4], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1),
+        )
+
+        self.up1 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[4], cs[5], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[5] + cs[3], cs[5], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[5], cs[5], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up2 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[5], cs[6], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[6] + cs[2], cs[6], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[6], cs[6], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up3 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[6], cs[7], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[7] + cs[1], cs[7], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[7], cs[7], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up4 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[7], cs[8], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[8] + cs[0], cs[8], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[8], cs[8], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.classifier = nn.Sequential(nn.Linear(cs[8], self.num_classes))
+
+        self.point_transforms = nn.ModuleList([
+            nn.Sequential(
+                nn.Linear(cs[0], cs[4]),
+                nn.BatchNorm1d(cs[4]),
+                nn.ReLU(True),
+            ),
+            nn.Sequential(
+                nn.Linear(cs[4], cs[6]),
+                nn.BatchNorm1d(cs[6]),
+                nn.ReLU(True),
+            ),
+            nn.Sequential(
+                nn.Linear(cs[6], cs[8]),
+                nn.BatchNorm1d(cs[8]),
+                nn.ReLU(True),
+            )
+        ])
+
+        self.weight_initialization()
+        self.dropout = nn.Dropout(0.3, True)
+
+    def weight_initialization(self):
+        for m in self.modules():
+            if isinstance(m, nn.BatchNorm1d):
+                nn.init.constant_(m.weight, 1)
+                nn.init.constant_(m.bias, 0)
+
+    def forward(self, data_dict, return_logits=False, return_final_logits=False):
+        x = data_dict['lidar']
+
+        # x: SparseTensor z: PointTensor
+        z = PointTensor(x.F, x.C.float())
+
+        x0 = initial_voxelize(z, self.pres, self.vres)
+
+        x0 = self.stem(x0)
+        z0 = voxel_to_point(x0, z, nearest=False)
+        z0.F = z0.F
+
+        x1 = point_to_voxel(x0, z0)
+        x1 = self.stage1(x1)
+        x2 = self.stage2(x1)
+        x3 = self.stage3(x2)
+        x4 = self.stage4(x3)
+        z1 = voxel_to_point(x4, z0)
+        z1.F = z1.F + self.point_transforms[0](z0.F)
+
+        y1 = point_to_voxel(x4, z1)
+
+        if return_logits:
+            output_dict = dict()
+            output_dict['logits'] = y1.F
+            output_dict['batch_indices'] = y1.C[:, -1]
+            return output_dict
+
+        y1.F = self.dropout(y1.F)
+        y1 = self.up1[0](y1)
+        y1 = torchsparse.cat([y1, x3])
+        y1 = self.up1[1](y1)
+
+        y2 = self.up2[0](y1)
+        y2 = torchsparse.cat([y2, x2])
+        y2 = self.up2[1](y2)
+        z2 = voxel_to_point(y2, z1)
+        z2.F = z2.F + self.point_transforms[1](z1.F)
+
+        y3 = point_to_voxel(y2, z2)
+        y3.F = self.dropout(y3.F)
+        y3 = self.up3[0](y3)
+        y3 = torchsparse.cat([y3, x1])
+        y3 = self.up3[1](y3)
+
+        y4 = self.up4[0](y3)
+        y4 = torchsparse.cat([y4, x0])
+        y4 = self.up4[1](y4)
+        z3 = voxel_to_point(y4, z2)
+        z3.F = z3.F + self.point_transforms[2](z2.F)
+
+        if return_final_logits:
+            output_dict = dict()
+            output_dict['logits'] = z3.F
+            output_dict['coords'] = z3.C[:, :3]
+            output_dict['batch_indices'] = z3.C[:, -1].long()
+            return output_dict
+
+        # output = self.classifier(z3.F)
+        data_dict['logits'] = z3.F
+
+        return data_dict
diff --git a/lidm/eval/models/ts/__init__.py b/lidm/eval/models/ts/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/models/ts/basic_blocks.py b/lidm/eval/models/ts/basic_blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..a18acc8eba8ad5f62ad6edb2cc02852a1536d0a3
--- /dev/null
+++ b/lidm/eval/models/ts/basic_blocks.py
@@ -0,0 +1,79 @@
+#!/usr/bin/env python
+# encoding: utf-8
+'''
+@author: Xu Yan
+@file: basic_blocks.py
+@time: 2021/4/14 22:53
+'''
+import torch.nn as nn
+
+try:
+    import torchsparse.nn as spnn
+except:
+    print('To install torchsparse 1.4.0, please refer to https://github.com/mit-han-lab/torchsparse/tree/74099d10a51c71c14318bce63d6421f698b24f24')
+
+
+class BasicConvolutionBlock(nn.Module):
+    def __init__(self, inc, outc, ks=3, stride=1, dilation=1):
+        super().__init__()
+        self.net = nn.Sequential(
+            spnn.Conv3d(
+                inc,
+                outc,
+                kernel_size=ks,
+                dilation=dilation,
+                stride=stride), spnn.BatchNorm(outc),
+            spnn.ReLU(True))
+
+    def forward(self, x):
+        out = self.net(x)
+        return out
+
+
+class BasicDeconvolutionBlock(nn.Module):
+    def __init__(self, inc, outc, ks=3, stride=1):
+        super().__init__()
+        self.net = nn.Sequential(
+            spnn.Conv3d(
+                inc,
+                outc,
+                kernel_size=ks,
+                stride=stride,
+                transposed=True),
+            spnn.BatchNorm(outc),
+            spnn.ReLU(True))
+
+    def forward(self, x):
+        return self.net(x)
+
+
+class ResidualBlock(nn.Module):
+    def __init__(self, inc, outc, ks=3, stride=1, dilation=1):
+        super().__init__()
+        self.net = nn.Sequential(
+            spnn.Conv3d(
+                inc,
+                outc,
+                kernel_size=ks,
+                dilation=dilation,
+                stride=stride), spnn.BatchNorm(outc),
+            spnn.ReLU(True),
+            spnn.Conv3d(
+                outc,
+                outc,
+                kernel_size=ks,
+                dilation=dilation,
+                stride=1),
+            spnn.BatchNorm(outc))
+
+        self.downsample = nn.Sequential() if (inc == outc and stride == 1) else \
+            nn.Sequential(
+                spnn.Conv3d(inc, outc, kernel_size=1, dilation=1, stride=stride),
+                spnn.BatchNorm(outc)
+            )
+
+        self.ReLU = spnn.ReLU(True)
+
+    def forward(self, x):
+        out = self.ReLU(self.net(x) + self.downsample(x))
+        return out
diff --git a/lidm/eval/models/ts/utils.py b/lidm/eval/models/ts/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..a4a01c0e54645ceb91fa76ed18bdae552f7fbf73
--- /dev/null
+++ b/lidm/eval/models/ts/utils.py
@@ -0,0 +1,90 @@
+import torch
+
+try:
+    import torchsparse.nn.functional as F
+    from torchsparse import PointTensor, SparseTensor
+    from torchsparse.nn.utils import get_kernel_offsets
+except:
+    print('To install torchsparse 1.4.0, please refer to https://github.com/mit-han-lab/torchsparse/tree/74099d10a51c71c14318bce63d6421f698b24f24')
+
+__all__ = ['initial_voxelize', 'point_to_voxel', 'voxel_to_point']
+
+
+# z: PointTensor
+# return: SparseTensor
+def initial_voxelize(z, init_res, after_res):
+    new_float_coord = torch.cat([(z.C[:, :3] * init_res) / after_res, z.C[:, -1].view(-1, 1)], 1)
+
+    pc_hash = F.sphash(torch.floor(new_float_coord).int())
+    sparse_hash = torch.unique(pc_hash)
+    idx_query = F.sphashquery(pc_hash, sparse_hash)
+    counts = F.spcount(idx_query.int(), len(sparse_hash))
+
+    inserted_coords = F.spvoxelize(torch.floor(new_float_coord), idx_query, counts)
+    inserted_coords = torch.round(inserted_coords).int()
+    inserted_feat = F.spvoxelize(z.F, idx_query, counts)
+
+    new_tensor = SparseTensor(inserted_feat, inserted_coords, 1)
+    new_tensor.cmaps.setdefault(new_tensor.stride, new_tensor.coords)
+    z.additional_features['idx_query'][1] = idx_query
+    z.additional_features['counts'][1] = counts
+    z.C = new_float_coord
+
+    return new_tensor
+
+
+# x: SparseTensor, z: PointTensor
+# return: SparseTensor
+def point_to_voxel(x, z):
+    if z.additional_features is None or \
+            z.additional_features.get('idx_query') is None or \
+            z.additional_features['idx_query'].get(x.s) is None:
+        pc_hash = F.sphash(
+            torch.cat([torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0], z.C[:, -1].int().view(-1, 1)], 1))
+        sparse_hash = F.sphash(x.C)
+        idx_query = F.sphashquery(pc_hash, sparse_hash)
+        counts = F.spcount(idx_query.int(), x.C.shape[0])
+        z.additional_features['idx_query'][x.s] = idx_query
+        z.additional_features['counts'][x.s] = counts
+    else:
+        idx_query = z.additional_features['idx_query'][x.s]
+        counts = z.additional_features['counts'][x.s]
+
+    inserted_feat = F.spvoxelize(z.F, idx_query, counts)
+    new_tensor = SparseTensor(inserted_feat, x.C, x.s)
+    new_tensor.cmaps = x.cmaps
+    new_tensor.kmaps = x.kmaps
+
+    return new_tensor
+
+
+# x: SparseTensor, z: PointTensor
+# return: PointTensor
+def voxel_to_point(x, z, nearest=False):
+    if z.idx_query is None or z.weights is None or z.idx_query.get(x.s) is None or z.weights.get(x.s) is None:
+        off = get_kernel_offsets(2, x.s, 1, device=z.F.device)
+        old_hash = F.sphash(
+            torch.cat([
+                torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0],
+                z.C[:, -1].int().view(-1, 1)], 1), off)
+        pc_hash = F.sphash(x.C.to(z.F.device))
+        idx_query = F.sphashquery(old_hash, pc_hash)
+        weights = F.calc_ti_weights(z.C, idx_query, scale=x.s[0]).transpose(0, 1).contiguous()
+        idx_query = idx_query.transpose(0, 1).contiguous()
+        if nearest:
+            weights[:, 1:] = 0.
+            idx_query[:, 1:] = -1
+        new_feat = F.spdevoxelize(x.F, idx_query, weights)
+        new_tensor = PointTensor(new_feat, z.C, idx_query=z.idx_query, weights=z.weights)
+        new_tensor.additional_features = z.additional_features
+        new_tensor.idx_query[x.s] = idx_query
+        new_tensor.weights[x.s] = weights
+        z.idx_query[x.s] = idx_query
+        z.weights[x.s] = weights
+
+    else:
+        new_feat = F.spdevoxelize(x.F, z.idx_query.get(x.s), z.weights.get(x.s))
+        new_tensor = PointTensor(new_feat, z.C, idx_query=z.idx_query, weights=z.weights)
+        new_tensor.additional_features = z.additional_features
+
+    return new_tensor
\ No newline at end of file
diff --git a/lidm/eval/modules/__init__.py b/lidm/eval/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/modules/chamfer2D/__init__.py b/lidm/eval/modules/chamfer2D/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/modules/chamfer2D/chamfer2D.cu b/lidm/eval/modules/chamfer2D/chamfer2D.cu
new file mode 100755
index 0000000000000000000000000000000000000000..567dd1a0c041f0e11476e1e59bc65198ac227e04
--- /dev/null
+++ b/lidm/eval/modules/chamfer2D/chamfer2D.cu
@@ -0,0 +1,182 @@
+
+#include <stdio.h>
+#include <ATen/ATen.h>
+
+#include <cuda.h>
+#include <cuda_runtime.h>
+
+#include <vector>
+
+
+
+__global__ void NmDistanceKernel(int b,int n,const float * xyz,int m,const float * xyz2,float * result,int * result_i){
+	const int batch=512;
+	__shared__ float buf[batch*2];
+	for (int i=blockIdx.x;i<b;i+=gridDim.x){
+		for (int k2=0;k2<m;k2+=batch){
+			int end_k=min(m,k2+batch)-k2;
+			for (int j=threadIdx.x;j<end_k*2;j+=blockDim.x){
+				buf[j]=xyz2[(i*m+k2)*2+j];
+			}
+			__syncthreads();
+			for (int j=threadIdx.x+blockIdx.y*blockDim.x;j<n;j+=blockDim.x*gridDim.y){
+				float x1=xyz[(i*n+j)*2+0];
+				float y1=xyz[(i*n+j)*2+1];
+				int best_i=0;
+				float best=0;
+				int end_ka=end_k-(end_k&2);
+				if (end_ka==batch){
+					for (int k=0;k<batch;k+=4){
+						{
+							float x2=buf[k*2+0]-x1;
+							float y2=buf[k*2+1]-y1;
+							float d=x2*x2+y2*y2;
+							if (k==0 || d<best){
+								best=d;
+								best_i=k+k2;
+							}
+						}
+						{
+							float x2=buf[k*2+2]-x1;
+							float y2=buf[k*2+3]-y1;
+							float d=x2*x2+y2*y2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+1;
+							}
+						}
+						{
+							float x2=buf[k*2+4]-x1;
+							float y2=buf[k*2+5]-y1;
+							float d=x2*x2+y2*y2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+2;
+							}
+						}
+						{
+							float x2=buf[k*2+6]-x1;
+							float y2=buf[k*2+7]-y1;
+							float d=x2*x2+y2*y2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+3;
+							}
+						}
+					}
+				}else{
+					for (int k=0;k<end_ka;k+=4){
+						{
+							float x2=buf[k*2+0]-x1;
+							float y2=buf[k*2+1]-y1;
+							float d=x2*x2+y2*y2;
+							if (k==0 || d<best){
+								best=d;
+								best_i=k+k2;
+							}
+						}
+						{
+							float x2=buf[k*2+2]-x1;
+							float y2=buf[k*2+3]-y1;
+							float d=x2*x2+y2*y2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+1;
+							}
+						}
+						{
+							float x2=buf[k*2+4]-x1;
+							float y2=buf[k*2+5]-y1;
+							float d=x2*x2+y2*y2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+2;
+							}
+						}
+						{
+							float x2=buf[k*2+6]-x1;
+							float y2=buf[k*2+7]-y1;
+							float d=x2*x2+y2*y2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+3;
+							}
+						}
+					}
+				}
+				for (int k=end_ka;k<end_k;k++){
+					float x2=buf[k*2+0]-x1;
+					float y2=buf[k*2+1]-y1;
+					float d=x2*x2+y2*y2;
+					if (k==0 || d<best){
+						best=d;
+						best_i=k+k2;
+					}
+				}
+				if (k2==0 || result[(i*n+j)]>best){
+					result[(i*n+j)]=best;
+					result_i[(i*n+j)]=best_i;
+				}
+			}
+			__syncthreads();
+		}
+	}
+}
+// int chamfer_cuda_forward(int b,int n,const float * xyz,int m,const float * xyz2,float * result,int * result_i,float * result2,int * result2_i, cudaStream_t stream){
+int chamfer_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist1, at::Tensor dist2, at::Tensor idx1, at::Tensor idx2){
+
+	const auto batch_size = xyz1.size(0);
+	const auto n = xyz1.size(1); //num_points point cloud A
+	const auto m = xyz2.size(1); //num_points point cloud B
+
+	NmDistanceKernel<<<dim3(32,16,1),512>>>(batch_size, n, xyz1.data<float>(), m, xyz2.data<float>(), dist1.data<float>(), idx1.data<int>());
+	NmDistanceKernel<<<dim3(32,16,1),512>>>(batch_size, m, xyz2.data<float>(), n, xyz1.data<float>(), dist2.data<float>(), idx2.data<int>());
+
+	cudaError_t err = cudaGetLastError();
+	  if (err != cudaSuccess) {
+	    printf("error in nnd updateOutput: %s\n", cudaGetErrorString(err));
+	    //THError("aborting");
+	    return 0;
+	  }
+	  return 1;
+
+
+}
+__global__ void NmDistanceGradKernel(int b,int n,const float * xyz1,int m,const float * xyz2,const float * grad_dist1,const int * idx1,float * grad_xyz1,float * grad_xyz2){
+	for (int i=blockIdx.x;i<b;i+=gridDim.x){
+		for (int j=threadIdx.x+blockIdx.y*blockDim.x;j<n;j+=blockDim.x*gridDim.y){
+			float x1=xyz1[(i*n+j)*2+0];
+			float y1=xyz1[(i*n+j)*2+1];
+			int j2=idx1[i*n+j];
+			float x2=xyz2[(i*m+j2)*2+0];
+			float y2=xyz2[(i*m+j2)*2+1];
+			float g=grad_dist1[i*n+j]*2;
+			atomicAdd(&(grad_xyz1[(i*n+j)*2+0]),g*(x1-x2));
+			atomicAdd(&(grad_xyz1[(i*n+j)*2+1]),g*(y1-y2));
+			atomicAdd(&(grad_xyz2[(i*m+j2)*2+0]),-(g*(x1-x2)));
+			atomicAdd(&(grad_xyz2[(i*m+j2)*2+1]),-(g*(y1-y2)));
+		}
+	}
+}
+// int chamfer_cuda_backward(int b,int n,const float * xyz1,int m,const float * xyz2,const float * grad_dist1,const int * idx1,const float * grad_dist2,const int * idx2,float * grad_xyz1,float * grad_xyz2, cudaStream_t stream){
+int chamfer_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz1, at::Tensor gradxyz2, at::Tensor graddist1, at::Tensor graddist2, at::Tensor idx1, at::Tensor idx2){
+	// cudaMemset(grad_xyz1,0,b*n*3*4);
+	// cudaMemset(grad_xyz2,0,b*m*3*4);
+	
+	const auto batch_size = xyz1.size(0);
+	const auto n = xyz1.size(1); //num_points point cloud A
+	const auto m = xyz2.size(1); //num_points point cloud B
+
+	NmDistanceGradKernel<<<dim3(1,16,1),256>>>(batch_size,n,xyz1.data<float>(),m,xyz2.data<float>(),graddist1.data<float>(),idx1.data<int>(),gradxyz1.data<float>(),gradxyz2.data<float>());
+	NmDistanceGradKernel<<<dim3(1,16,1),256>>>(batch_size,m,xyz2.data<float>(),n,xyz1.data<float>(),graddist2.data<float>(),idx2.data<int>(),gradxyz2.data<float>(),gradxyz1.data<float>());
+	
+	cudaError_t err = cudaGetLastError();
+	  if (err != cudaSuccess) {
+	    printf("error in nnd get grad: %s\n", cudaGetErrorString(err));
+	    //THError("aborting");
+	    return 0;
+	  }
+	  return 1;
+	
+}
+
diff --git a/lidm/eval/modules/chamfer2D/chamfer_cuda.cpp b/lidm/eval/modules/chamfer2D/chamfer_cuda.cpp
new file mode 100755
index 0000000000000000000000000000000000000000..67574e21818ae9388f44f964d606b2f00355865e
--- /dev/null
+++ b/lidm/eval/modules/chamfer2D/chamfer_cuda.cpp
@@ -0,0 +1,33 @@
+#include <torch/torch.h>
+#include <vector>
+
+///TMP
+//#include "common.h"
+/// NOT TMP
+	
+
+int chamfer_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist1, at::Tensor dist2, at::Tensor idx1, at::Tensor idx2);
+
+
+int chamfer_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz1, at::Tensor gradxyz2, at::Tensor graddist1, at::Tensor graddist2, at::Tensor idx1, at::Tensor idx2);
+
+
+
+
+int chamfer_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist1, at::Tensor dist2, at::Tensor idx1, at::Tensor idx2) {
+    return chamfer_cuda_forward(xyz1, xyz2, dist1, dist2, idx1, idx2);
+}
+
+
+int chamfer_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz1, at::Tensor gradxyz2, at::Tensor graddist1, 
+					  at::Tensor graddist2, at::Tensor idx1, at::Tensor idx2) {
+
+    return chamfer_cuda_backward(xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2);
+}
+
+
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+  m.def("forward", &chamfer_forward, "chamfer forward (CUDA)");
+  m.def("backward", &chamfer_backward, "chamfer backward (CUDA)");
+}
\ No newline at end of file
diff --git a/lidm/eval/modules/chamfer2D/dist_chamfer_2D.py b/lidm/eval/modules/chamfer2D/dist_chamfer_2D.py
new file mode 100644
index 0000000000000000000000000000000000000000..e7ecedbc731b23895ed2d6fe3fe48aaf632940da
--- /dev/null
+++ b/lidm/eval/modules/chamfer2D/dist_chamfer_2D.py
@@ -0,0 +1,84 @@
+from torch import nn
+from torch.autograd import Function
+import torch
+import importlib
+import os
+
+chamfer_found = importlib.find_loader("chamfer_2D") is not None
+if not chamfer_found:
+    ## Cool trick from https://github.com/chrdiller
+    print("Jitting Chamfer 2D")
+    cur_path = os.path.dirname(os.path.abspath(__file__))
+    build_path = cur_path.replace('chamfer2D', 'tmp')
+    os.makedirs(build_path, exist_ok=True)
+
+    from torch.utils.cpp_extension import load
+
+    chamfer_2D = load(name="chamfer_2D",
+                      sources=[
+                          "/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer_cuda.cpp"]),
+                          "/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer2D.cu"]),
+                      ], build_directory=build_path)
+    print("Loaded JIT 2D CUDA chamfer distance")
+
+else:
+    import chamfer_2D
+
+    print("Loaded compiled 2D CUDA chamfer distance")
+
+
+# Chamfer's distance module @thibaultgroueix
+# GPU tensors only
+class chamfer_2DFunction(Function):
+    @staticmethod
+    def forward(ctx, xyz1, xyz2):
+        batchsize, n, dim = xyz1.size()
+        assert dim == 2, "Wrong last dimension for the chamfer distance 's input! Check with .size()"
+        _, m, dim = xyz2.size()
+        assert dim == 2, "Wrong last dimension for the chamfer distance 's input! Check with .size()"
+        device = xyz1.device
+
+        device = xyz1.device
+
+        dist1 = torch.zeros(batchsize, n)
+        dist2 = torch.zeros(batchsize, m)
+
+        idx1 = torch.zeros(batchsize, n).type(torch.IntTensor)
+        idx2 = torch.zeros(batchsize, m).type(torch.IntTensor)
+
+        dist1 = dist1.to(device)
+        dist2 = dist2.to(device)
+        idx1 = idx1.to(device)
+        idx2 = idx2.to(device)
+        torch.cuda.set_device(device)
+
+        chamfer_2D.forward(xyz1, xyz2, dist1, dist2, idx1, idx2)
+        ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
+        return dist1, dist2, idx1, idx2
+
+    @staticmethod
+    def backward(ctx, graddist1, graddist2, gradidx1, gradidx2):
+        xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
+        graddist1 = graddist1.contiguous()
+        graddist2 = graddist2.contiguous()
+        device = graddist1.device
+
+        gradxyz1 = torch.zeros(xyz1.size())
+        gradxyz2 = torch.zeros(xyz2.size())
+
+        gradxyz1 = gradxyz1.to(device)
+        gradxyz2 = gradxyz2.to(device)
+        chamfer_2D.backward(
+            xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2
+        )
+        return gradxyz1, gradxyz2
+
+
+class chamfer_2DDist(nn.Module):
+    def __init__(self):
+        super(chamfer_2DDist, self).__init__()
+
+    def forward(self, input1, input2):
+        input1 = input1.contiguous()
+        input2 = input2.contiguous()
+        return chamfer_2DFunction.apply(input1, input2)
diff --git a/lidm/eval/modules/chamfer2D/setup.py b/lidm/eval/modules/chamfer2D/setup.py
new file mode 100755
index 0000000000000000000000000000000000000000..11d01237f57ad386dd88adda4cc869a53f94f4f2
--- /dev/null
+++ b/lidm/eval/modules/chamfer2D/setup.py
@@ -0,0 +1,14 @@
+from setuptools import setup
+from torch.utils.cpp_extension import BuildExtension, CUDAExtension
+
+setup(
+    name='chamfer_2D',
+    ext_modules=[
+        CUDAExtension('chamfer_2D', [
+            "/".join(__file__.split('/')[:-1] + ['chamfer_cuda.cpp']),
+            "/".join(__file__.split('/')[:-1] + ['chamfer2D.cu']),
+        ]),
+    ],
+    cmdclass={
+        'build_ext': BuildExtension
+    })
\ No newline at end of file
diff --git a/lidm/eval/modules/chamfer3D/__init__.py b/lidm/eval/modules/chamfer3D/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/modules/chamfer3D/chamfer3D.cu b/lidm/eval/modules/chamfer3D/chamfer3D.cu
new file mode 100644
index 0000000000000000000000000000000000000000..d5b886dff11733be30519247d1fdb784818bff4a
--- /dev/null
+++ b/lidm/eval/modules/chamfer3D/chamfer3D.cu
@@ -0,0 +1,196 @@
+
+#include <stdio.h>
+#include <ATen/ATen.h>
+
+#include <cuda.h>
+#include <cuda_runtime.h>
+
+#include <vector>
+
+
+
+__global__ void NmDistanceKernel(int b,int n,const float * xyz,int m,const float * xyz2,float * result,int * result_i){
+	const int batch=512;
+	__shared__ float buf[batch*3];
+	for (int i=blockIdx.x;i<b;i+=gridDim.x){
+		for (int k2=0;k2<m;k2+=batch){
+			int end_k=min(m,k2+batch)-k2;
+			for (int j=threadIdx.x;j<end_k*3;j+=blockDim.x){
+				buf[j]=xyz2[(i*m+k2)*3+j];
+			}
+			__syncthreads();
+			for (int j=threadIdx.x+blockIdx.y*blockDim.x;j<n;j+=blockDim.x*gridDim.y){
+				float x1=xyz[(i*n+j)*3+0];
+				float y1=xyz[(i*n+j)*3+1];
+				float z1=xyz[(i*n+j)*3+2];
+				int best_i=0;
+				float best=0;
+				int end_ka=end_k-(end_k&3);
+				if (end_ka==batch){
+					for (int k=0;k<batch;k+=4){
+						{
+							float x2=buf[k*3+0]-x1;
+							float y2=buf[k*3+1]-y1;
+							float z2=buf[k*3+2]-z1;
+							float d=x2*x2+y2*y2+z2*z2;
+							if (k==0 || d<best){
+								best=d;
+								best_i=k+k2;
+							}
+						}
+						{
+							float x2=buf[k*3+3]-x1;
+							float y2=buf[k*3+4]-y1;
+							float z2=buf[k*3+5]-z1;
+							float d=x2*x2+y2*y2+z2*z2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+1;
+							}
+						}
+						{
+							float x2=buf[k*3+6]-x1;
+							float y2=buf[k*3+7]-y1;
+							float z2=buf[k*3+8]-z1;
+							float d=x2*x2+y2*y2+z2*z2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+2;
+							}
+						}
+						{
+							float x2=buf[k*3+9]-x1;
+							float y2=buf[k*3+10]-y1;
+							float z2=buf[k*3+11]-z1;
+							float d=x2*x2+y2*y2+z2*z2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+3;
+							}
+						}
+					}
+				}else{
+					for (int k=0;k<end_ka;k+=4){
+						{
+							float x2=buf[k*3+0]-x1;
+							float y2=buf[k*3+1]-y1;
+							float z2=buf[k*3+2]-z1;
+							float d=x2*x2+y2*y2+z2*z2;
+							if (k==0 || d<best){
+								best=d;
+								best_i=k+k2;
+							}
+						}
+						{
+							float x2=buf[k*3+3]-x1;
+							float y2=buf[k*3+4]-y1;
+							float z2=buf[k*3+5]-z1;
+							float d=x2*x2+y2*y2+z2*z2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+1;
+							}
+						}
+						{
+							float x2=buf[k*3+6]-x1;
+							float y2=buf[k*3+7]-y1;
+							float z2=buf[k*3+8]-z1;
+							float d=x2*x2+y2*y2+z2*z2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+2;
+							}
+						}
+						{
+							float x2=buf[k*3+9]-x1;
+							float y2=buf[k*3+10]-y1;
+							float z2=buf[k*3+11]-z1;
+							float d=x2*x2+y2*y2+z2*z2;
+							if (d<best){
+								best=d;
+								best_i=k+k2+3;
+							}
+						}
+					}
+				}
+				for (int k=end_ka;k<end_k;k++){
+					float x2=buf[k*3+0]-x1;
+					float y2=buf[k*3+1]-y1;
+					float z2=buf[k*3+2]-z1;
+					float d=x2*x2+y2*y2+z2*z2;
+					if (k==0 || d<best){
+						best=d;
+						best_i=k+k2;
+					}
+				}
+				if (k2==0 || result[(i*n+j)]>best){
+					result[(i*n+j)]=best;
+					result_i[(i*n+j)]=best_i;
+				}
+			}
+			__syncthreads();
+		}
+	}
+}
+// int chamfer_cuda_forward(int b,int n,const float * xyz,int m,const float * xyz2,float * result,int * result_i,float * result2,int * result2_i, cudaStream_t stream){
+int chamfer_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist1, at::Tensor dist2, at::Tensor idx1, at::Tensor idx2){
+
+	const auto batch_size = xyz1.size(0);
+	const auto n = xyz1.size(1); //num_points point cloud A
+	const auto m = xyz2.size(1); //num_points point cloud B
+
+	NmDistanceKernel<<<dim3(32,16,1),512>>>(batch_size, n, xyz1.data<float>(), m, xyz2.data<float>(), dist1.data<float>(), idx1.data<int>());
+	NmDistanceKernel<<<dim3(32,16,1),512>>>(batch_size, m, xyz2.data<float>(), n, xyz1.data<float>(), dist2.data<float>(), idx2.data<int>());
+
+	cudaError_t err = cudaGetLastError();
+	  if (err != cudaSuccess) {
+	    printf("error in nnd updateOutput: %s\n", cudaGetErrorString(err));
+	    //THError("aborting");
+	    return 0;
+	  }
+	  return 1;
+
+
+}
+__global__ void NmDistanceGradKernel(int b,int n,const float * xyz1,int m,const float * xyz2,const float * grad_dist1,const int * idx1,float * grad_xyz1,float * grad_xyz2){
+	for (int i=blockIdx.x;i<b;i+=gridDim.x){
+		for (int j=threadIdx.x+blockIdx.y*blockDim.x;j<n;j+=blockDim.x*gridDim.y){
+			float x1=xyz1[(i*n+j)*3+0];
+			float y1=xyz1[(i*n+j)*3+1];
+			float z1=xyz1[(i*n+j)*3+2];
+			int j2=idx1[i*n+j];
+			float x2=xyz2[(i*m+j2)*3+0];
+			float y2=xyz2[(i*m+j2)*3+1];
+			float z2=xyz2[(i*m+j2)*3+2];
+			float g=grad_dist1[i*n+j]*2;
+			atomicAdd(&(grad_xyz1[(i*n+j)*3+0]),g*(x1-x2));
+			atomicAdd(&(grad_xyz1[(i*n+j)*3+1]),g*(y1-y2));
+			atomicAdd(&(grad_xyz1[(i*n+j)*3+2]),g*(z1-z2));
+			atomicAdd(&(grad_xyz2[(i*m+j2)*3+0]),-(g*(x1-x2)));
+			atomicAdd(&(grad_xyz2[(i*m+j2)*3+1]),-(g*(y1-y2)));
+			atomicAdd(&(grad_xyz2[(i*m+j2)*3+2]),-(g*(z1-z2)));
+		}
+	}
+}
+// int chamfer_cuda_backward(int b,int n,const float * xyz1,int m,const float * xyz2,const float * grad_dist1,const int * idx1,const float * grad_dist2,const int * idx2,float * grad_xyz1,float * grad_xyz2, cudaStream_t stream){
+int chamfer_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz1, at::Tensor gradxyz2, at::Tensor graddist1, at::Tensor graddist2, at::Tensor idx1, at::Tensor idx2){
+	// cudaMemset(grad_xyz1,0,b*n*3*4);
+	// cudaMemset(grad_xyz2,0,b*m*3*4);
+	
+	const auto batch_size = xyz1.size(0);
+	const auto n = xyz1.size(1); //num_points point cloud A
+	const auto m = xyz2.size(1); //num_points point cloud B
+
+	NmDistanceGradKernel<<<dim3(1,16,1),256>>>(batch_size,n,xyz1.data<float>(),m,xyz2.data<float>(),graddist1.data<float>(),idx1.data<int>(),gradxyz1.data<float>(),gradxyz2.data<float>());
+	NmDistanceGradKernel<<<dim3(1,16,1),256>>>(batch_size,m,xyz2.data<float>(),n,xyz1.data<float>(),graddist2.data<float>(),idx2.data<int>(),gradxyz2.data<float>(),gradxyz1.data<float>());
+	
+	cudaError_t err = cudaGetLastError();
+	  if (err != cudaSuccess) {
+	    printf("error in nnd get grad: %s\n", cudaGetErrorString(err));
+	    //THError("aborting");
+	    return 0;
+	  }
+	  return 1;
+	
+}
+
diff --git a/lidm/eval/modules/chamfer3D/chamfer_cuda.cpp b/lidm/eval/modules/chamfer3D/chamfer_cuda.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..67574e21818ae9388f44f964d606b2f00355865e
--- /dev/null
+++ b/lidm/eval/modules/chamfer3D/chamfer_cuda.cpp
@@ -0,0 +1,33 @@
+#include <torch/torch.h>
+#include <vector>
+
+///TMP
+//#include "common.h"
+/// NOT TMP
+	
+
+int chamfer_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist1, at::Tensor dist2, at::Tensor idx1, at::Tensor idx2);
+
+
+int chamfer_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz1, at::Tensor gradxyz2, at::Tensor graddist1, at::Tensor graddist2, at::Tensor idx1, at::Tensor idx2);
+
+
+
+
+int chamfer_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist1, at::Tensor dist2, at::Tensor idx1, at::Tensor idx2) {
+    return chamfer_cuda_forward(xyz1, xyz2, dist1, dist2, idx1, idx2);
+}
+
+
+int chamfer_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz1, at::Tensor gradxyz2, at::Tensor graddist1, 
+					  at::Tensor graddist2, at::Tensor idx1, at::Tensor idx2) {
+
+    return chamfer_cuda_backward(xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2);
+}
+
+
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+  m.def("forward", &chamfer_forward, "chamfer forward (CUDA)");
+  m.def("backward", &chamfer_backward, "chamfer backward (CUDA)");
+}
\ No newline at end of file
diff --git a/lidm/eval/modules/chamfer3D/dist_chamfer_3D.py b/lidm/eval/modules/chamfer3D/dist_chamfer_3D.py
new file mode 100644
index 0000000000000000000000000000000000000000..30063e50293445f0785f1cb7fd05719a1a29b172
--- /dev/null
+++ b/lidm/eval/modules/chamfer3D/dist_chamfer_3D.py
@@ -0,0 +1,76 @@
+from torch import nn
+from torch.autograd import Function
+import torch
+import importlib
+import os
+
+chamfer_found = importlib.find_loader("chamfer_3D") is not None
+if not chamfer_found:
+    ## Cool trick from https://github.com/chrdiller
+    print("Jitting Chamfer 3D")
+
+    from torch.utils.cpp_extension import load
+
+    chamfer_3D = load(name="chamfer_3D",
+                      sources=[
+                          "/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer_cuda.cpp"]),
+                          "/".join(os.path.abspath(__file__).split('/')[:-1] + ["chamfer3D.cu"]),
+                      ])
+    print("Loaded JIT 3D CUDA chamfer distance")
+
+else:
+    import chamfer_3D
+    print("Loaded compiled 3D CUDA chamfer distance")
+
+
+# Chamfer's distance module @thibaultgroueix
+# GPU tensors only
+class chamfer_3DFunction(Function):
+    @staticmethod
+    def forward(ctx, xyz1, xyz2):
+        batchsize, n, _ = xyz1.size()
+        _, m, _ = xyz2.size()
+        device = xyz1.device
+
+        dist1 = torch.zeros(batchsize, n)
+        dist2 = torch.zeros(batchsize, m)
+
+        idx1 = torch.zeros(batchsize, n).type(torch.IntTensor)
+        idx2 = torch.zeros(batchsize, m).type(torch.IntTensor)
+
+        dist1 = dist1.to(device)
+        dist2 = dist2.to(device)
+        idx1 = idx1.to(device)
+        idx2 = idx2.to(device)
+        torch.cuda.set_device(device)
+
+        chamfer_3D.forward(xyz1, xyz2, dist1, dist2, idx1, idx2)
+        ctx.save_for_backward(xyz1, xyz2, idx1, idx2)
+        return dist1, dist2, idx1, idx2
+
+    @staticmethod
+    def backward(ctx, graddist1, graddist2, gradidx1, gradidx2):
+        xyz1, xyz2, idx1, idx2 = ctx.saved_tensors
+        graddist1 = graddist1.contiguous()
+        graddist2 = graddist2.contiguous()
+        device = graddist1.device
+
+        gradxyz1 = torch.zeros(xyz1.size())
+        gradxyz2 = torch.zeros(xyz2.size())
+
+        gradxyz1 = gradxyz1.to(device)
+        gradxyz2 = gradxyz2.to(device)
+        chamfer_3D.backward(
+            xyz1, xyz2, gradxyz1, gradxyz2, graddist1, graddist2, idx1, idx2
+        )
+        return gradxyz1, gradxyz2
+
+
+class chamfer_3DDist(nn.Module):
+    def __init__(self):
+        super(chamfer_3DDist, self).__init__()
+
+    def forward(self, input1, input2):
+        input1 = input1.contiguous()
+        input2 = input2.contiguous()
+        return chamfer_3DFunction.apply(input1, input2)
diff --git a/lidm/eval/modules/chamfer3D/setup.py b/lidm/eval/modules/chamfer3D/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..9a23aadadde026eb8c3db68a43d63086f6be856a
--- /dev/null
+++ b/lidm/eval/modules/chamfer3D/setup.py
@@ -0,0 +1,14 @@
+from setuptools import setup
+from torch.utils.cpp_extension import BuildExtension, CUDAExtension
+
+setup(
+    name='chamfer_3D',
+    ext_modules=[
+        CUDAExtension('chamfer_3D', [
+            "/".join(__file__.split('/')[:-1] + ['chamfer_cuda.cpp']),
+            "/".join(__file__.split('/')[:-1] + ['chamfer3D.cu']),
+        ]),
+    ],
+    cmdclass={
+        'build_ext': BuildExtension
+    })
\ No newline at end of file
diff --git a/lidm/eval/modules/emd/__init__.py b/lidm/eval/modules/emd/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/eval/modules/emd/emd.cpp b/lidm/eval/modules/emd/emd.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..5036016370aa5f148b17ec44ea7a30bc576c3a82
--- /dev/null
+++ b/lidm/eval/modules/emd/emd.cpp
@@ -0,0 +1,31 @@
+// EMD approximation module (based on auction algorithm)
+// author: Minghua Liu
+#include <torch/extension.h>
+#include <vector>
+
+int emd_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist, at::Tensor assignment, at::Tensor price, 
+	                 at::Tensor assignment_inv, at::Tensor bid, at::Tensor bid_increments, at::Tensor max_increments,
+	                 at::Tensor unass_idx, at::Tensor unass_cnt, at::Tensor unass_cnt_sum, at::Tensor cnt_tmp, at::Tensor max_idx, float eps, int iters);
+
+int emd_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz, at::Tensor graddist, at::Tensor idx);
+
+
+
+int emd_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist, at::Tensor assignment, at::Tensor price, 
+	                 at::Tensor assignment_inv, at::Tensor bid, at::Tensor bid_increments, at::Tensor max_increments,
+	                 at::Tensor unass_idx, at::Tensor unass_cnt, at::Tensor unass_cnt_sum, at::Tensor cnt_tmp, at::Tensor max_idx, float eps, int iters) {
+	return emd_cuda_forward(xyz1, xyz2, dist, assignment, price, assignment_inv, bid, bid_increments, max_increments, unass_idx, unass_cnt, unass_cnt_sum, cnt_tmp, max_idx, eps, iters);
+}
+
+int emd_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz, at::Tensor graddist, at::Tensor idx) {
+
+    return emd_cuda_backward(xyz1, xyz2, gradxyz, graddist, idx);
+}
+
+
+
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+  m.def("forward", &emd_forward, "emd forward (CUDA)");
+  m.def("backward", &emd_backward, "emd backward (CUDA)");
+}
\ No newline at end of file
diff --git a/lidm/eval/modules/emd/emd_cuda.cu b/lidm/eval/modules/emd/emd_cuda.cu
new file mode 100644
index 0000000000000000000000000000000000000000..08999bbac057bd09ed7668b71e2f691e4f06fd6b
--- /dev/null
+++ b/lidm/eval/modules/emd/emd_cuda.cu
@@ -0,0 +1,316 @@
+// EMD approximation module (based on auction algorithm)
+// author: Minghua Liu
+#include <stdio.h>
+#include <ATen/ATen.h>
+
+#include <cuda.h>
+#include <iostream>
+#include <cuda_runtime.h>
+
+__device__ __forceinline__ float atomicMax(float *address, float val)
+{
+    int ret = __float_as_int(*address);
+    while(val > __int_as_float(ret))
+    {
+        int old = ret;
+        if((ret = atomicCAS((int *)address, old, __float_as_int(val))) == old)
+            break;
+    }
+    return __int_as_float(ret);
+}
+
+
+__global__ void clear(int b, int * cnt_tmp, int * unass_cnt) {
+	for (int i = threadIdx.x; i < b; i += blockDim.x) {
+		cnt_tmp[i] = 0;
+		unass_cnt[i] = 0;
+	}
+}
+
+__global__ void calc_unass_cnt(int b, int n, int * assignment, int * unass_cnt) { 
+	// count the number of unassigned points in each batch
+	const int BLOCK_SIZE = 1024; 
+	__shared__ int scan_array[BLOCK_SIZE];
+	for (int i = blockIdx.x; i < b; i += gridDim.x) {
+		scan_array[threadIdx.x] = assignment[i * n + blockIdx.y * BLOCK_SIZE + threadIdx.x] == -1 ? 1 : 0;
+		__syncthreads();
+		
+		int stride = 1;
+		while(stride <= BLOCK_SIZE / 2) {
+			int index = (threadIdx.x + 1) * stride * 2 - 1; 
+			if(index < BLOCK_SIZE)
+				scan_array[index] += scan_array[index - stride]; 
+			stride = stride * 2;
+			__syncthreads(); 
+		}
+		__syncthreads();
+		
+		if (threadIdx.x == BLOCK_SIZE - 1) {
+			atomicAdd(&unass_cnt[i], scan_array[threadIdx.x]);
+		}
+		__syncthreads();
+	}
+}
+
+__global__ void calc_unass_cnt_sum(int b, int * unass_cnt, int * unass_cnt_sum) {
+	// count the cumulative sum over over unass_cnt
+	const int BLOCK_SIZE = 512; // batch_size <= 512
+	__shared__ int scan_array[BLOCK_SIZE];
+	scan_array[threadIdx.x] = unass_cnt[threadIdx.x];
+	__syncthreads();
+	
+	int stride = 1;
+	while(stride <= BLOCK_SIZE / 2) {
+		int index = (threadIdx.x + 1) * stride * 2 - 1; 
+		if(index < BLOCK_SIZE)
+			scan_array[index] += scan_array[index - stride]; 
+		stride = stride * 2;
+		__syncthreads(); 
+	}
+	__syncthreads();
+	stride = BLOCK_SIZE / 4; 
+	while(stride > 0) {
+		int index = (threadIdx.x + 1) * stride * 2 - 1; 
+		if((index + stride) < BLOCK_SIZE)
+			scan_array[index + stride] += scan_array[index];
+		stride = stride / 2;
+		__syncthreads(); 
+	}
+	__syncthreads(); 
+	
+	//printf("%d\n", unass_cnt_sum[b - 1]);
+	unass_cnt_sum[threadIdx.x] = scan_array[threadIdx.x];
+}
+
+__global__ void calc_unass_idx(int b, int n, int * assignment, int * unass_idx, int * unass_cnt, int * unass_cnt_sum, int * cnt_tmp) {
+	// list all the unassigned points
+	for (int i = blockIdx.x; i < b; i += gridDim.x) {
+		if (assignment[i * n + blockIdx.y * 1024 + threadIdx.x] == -1) {
+			int idx = atomicAdd(&cnt_tmp[i], 1);
+			unass_idx[unass_cnt_sum[i] - unass_cnt[i] + idx] = blockIdx.y * 1024 + threadIdx.x;
+		} 
+	}
+}
+
+__global__ void Bid(int b, int n, const float * xyz1, const float * xyz2, float eps, int * assignment, int * assignment_inv, float * price, 
+					int * bid, float * bid_increments, float * max_increments, int * unass_cnt, int * unass_cnt_sum, int * unass_idx) {
+	const int batch = 2048, block_size = 1024, block_cnt = n / 1024;
+	__shared__ float xyz2_buf[batch * 3];
+	__shared__ float price_buf[batch];
+	__shared__ float best_buf[block_size];
+	__shared__ float better_buf[block_size];
+	__shared__ int best_i_buf[block_size];
+	for (int i = blockIdx.x; i < b; i += gridDim.x) {
+		int _unass_cnt = unass_cnt[i];
+		if (_unass_cnt == 0)
+			continue;
+		int _unass_cnt_sum = unass_cnt_sum[i];
+		int unass_per_block = (_unass_cnt + block_cnt - 1) / block_cnt;
+		int thread_per_unass = block_size / unass_per_block;
+		int unass_this_block = max(min(_unass_cnt - (int) blockIdx.y * unass_per_block, unass_per_block), 0);
+			
+		float x1, y1, z1, best = -1e9, better = -1e9;
+		int best_i = -1, _unass_id = -1, thread_in_unass;
+
+		if (threadIdx.x < thread_per_unass * unass_this_block) {
+			_unass_id = unass_per_block * blockIdx.y + threadIdx.x / thread_per_unass + _unass_cnt_sum - _unass_cnt;
+			_unass_id = unass_idx[_unass_id];
+			thread_in_unass = threadIdx.x % thread_per_unass;
+
+			x1 = xyz1[(i * n + _unass_id) * 3 + 0];
+			y1 = xyz1[(i * n + _unass_id) * 3 + 1];
+			z1 = xyz1[(i * n + _unass_id) * 3 + 2];
+		}
+
+		for (int k2 = 0; k2 < n; k2 += batch) {
+			int end_k = min(n, k2 + batch) - k2;
+			for (int j = threadIdx.x; j < end_k * 3; j += blockDim.x) {
+				xyz2_buf[j] = xyz2[(i * n + k2) * 3 + j];
+			}
+			for (int j = threadIdx.x; j < end_k; j += blockDim.x) {
+				price_buf[j] = price[i * n + k2 + j];
+			}
+			__syncthreads();
+
+			if (_unass_id != -1) {
+				int delta = (end_k + thread_per_unass - 1) / thread_per_unass;
+				int l = thread_in_unass * delta;
+				int r = min((thread_in_unass + 1) * delta, end_k);
+				for (int k = l; k < r; k++) 
+				//if (!last || assignment_inv[i * n + k + k2] == -1)
+				{
+					float x2 = xyz2_buf[k * 3 + 0] - x1;
+					float y2 = xyz2_buf[k * 3 + 1] - y1;
+					float z2 = xyz2_buf[k * 3 + 2] - z1;
+					// the coordinates of points should be normalized to [0, 1]
+					float d = 3.0 - sqrtf(x2 * x2 + y2 * y2 + z2 * z2) - price_buf[k];
+					if (d > best) {
+						better = best;
+						best = d;
+						best_i = k + k2;
+					}
+					else if (d > better) {
+						better = d;
+					}
+				}
+			}
+			__syncthreads();
+		}
+
+		best_buf[threadIdx.x] = best;
+		better_buf[threadIdx.x] = better;
+		best_i_buf[threadIdx.x] = best_i;
+		__syncthreads();
+		
+		if (_unass_id != -1 && thread_in_unass == 0) {
+			for (int j = threadIdx.x + 1; j < threadIdx.x + thread_per_unass; j++) {
+				if (best_buf[j] > best) {
+					better = max(best, better_buf[j]);
+					best = best_buf[j];
+					best_i = best_i_buf[j];
+				}
+				else better = max(better, best_buf[j]);
+			}
+			bid[i * n + _unass_id] = best_i;
+			bid_increments[i * n + _unass_id] = best - better + eps; 
+			atomicMax(&max_increments[i * n + best_i], best - better + eps);
+		}
+	}
+}
+
+__global__ void GetMax(int b, int n, int * assignment, int * bid, float * bid_increments, float * max_increments, int * max_idx) {
+	for (int i = blockIdx.x; i < b; i += gridDim.x) {
+		int j = threadIdx.x + blockIdx.y * blockDim.x;
+		if (assignment[i * n + j] == -1) {
+			int bid_id = bid[i * n + j];
+			float bid_inc = bid_increments[i * n + j];
+			float max_inc = max_increments[i * n + bid_id];
+			if (bid_inc - 1e-6 <= max_inc && max_inc <= bid_inc + 1e-6) 
+			{
+				max_idx[i * n + bid_id] = j;
+			}
+		}
+	}
+}
+
+__global__ void Assign(int b, int n, int * assignment, int * assignment_inv, float * price, int * bid, float * bid_increments, float * max_increments, int * max_idx, bool last) {
+	for (int i = blockIdx.x; i < b; i += gridDim.x) {
+		int j = threadIdx.x + blockIdx.y * blockDim.x;
+		if (assignment[i * n + j] == -1) {
+			int bid_id = bid[i * n + j];
+			if (last || max_idx[i * n + bid_id] == j) 
+			{
+				float bid_inc = bid_increments[i * n + j];
+				int ass_inv = assignment_inv[i * n + bid_id];
+				if (!last && ass_inv != -1) {
+					assignment[i * n + ass_inv] = -1;
+				}
+				assignment_inv[i * n + bid_id] = j;
+				assignment[i * n + j] = bid_id;
+				price[i * n + bid_id] += bid_inc;
+				max_increments[i * n + bid_id] = -1e9;
+			}
+		}
+	}
+}
+
+__global__ void CalcDist(int b, int n, float * xyz1, float * xyz2, float * dist, int * assignment) {
+	for (int i = blockIdx.x; i < b; i += gridDim.x) {
+		int j = threadIdx.x + blockIdx.y * blockDim.x;
+		int k = assignment[i * n + j];
+		float deltax = xyz1[(i * n + j) * 3 + 0] - xyz2[(i * n + k) * 3 + 0];
+		float deltay = xyz1[(i * n + j) * 3 + 1] - xyz2[(i * n + k) * 3 + 1];
+		float deltaz = xyz1[(i * n + j) * 3 + 2] - xyz2[(i * n + k) * 3 + 2];
+		dist[i * n + j] = deltax * deltax + deltay * deltay + deltaz * deltaz;
+	}
+}
+
+int emd_cuda_forward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor dist, at::Tensor assignment, at::Tensor price, 
+	                 at::Tensor assignment_inv, at::Tensor bid, at::Tensor bid_increments, at::Tensor max_increments,
+	                 at::Tensor unass_idx, at::Tensor unass_cnt, at::Tensor unass_cnt_sum, at::Tensor cnt_tmp, at::Tensor max_idx, float eps, int iters) {
+
+	const auto batch_size = xyz1.size(0);
+	const auto n = xyz1.size(1); //num_points point cloud A
+	const auto m = xyz2.size(1); //num_points point cloud B
+	
+	if (n != m) {
+		printf("Input Error! The two point clouds should have the same size.\n");
+		return -1;
+	}
+
+	if (batch_size > 512) {
+		printf("Input Error! The batch size should be less than 512.\n");
+		return -1;
+	}
+
+	if (n % 1024 != 0) {
+		printf("Input Error! The size of the point clouds should be a multiple of 1024.\n");
+		return -1;
+	}
+
+	//cudaEvent_t start,stop;
+	//cudaEventCreate(&start);
+	//cudaEventCreate(&stop);
+	//cudaEventRecord(start);
+	//int iters = 50;
+	for (int i = 0; i < iters; i++) {
+		clear<<<1, batch_size>>>(batch_size, cnt_tmp.data<int>(), unass_cnt.data<int>());
+		calc_unass_cnt<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, assignment.data<int>(), unass_cnt.data<int>());
+		calc_unass_cnt_sum<<<1, batch_size>>>(batch_size, unass_cnt.data<int>(), unass_cnt_sum.data<int>());
+		calc_unass_idx<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, assignment.data<int>(), unass_idx.data<int>(), unass_cnt.data<int>(), 
+											 unass_cnt_sum.data<int>(), cnt_tmp.data<int>());
+		Bid<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, xyz1.data<float>(), xyz2.data<float>(), eps, assignment.data<int>(), assignment_inv.data<int>(), 
+			                          price.data<float>(), bid.data<int>(), bid_increments.data<float>(), max_increments.data<float>(),
+			                          unass_cnt.data<int>(), unass_cnt_sum.data<int>(), unass_idx.data<int>());
+		GetMax<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, assignment.data<int>(), bid.data<int>(), bid_increments.data<float>(), max_increments.data<float>(), max_idx.data<int>());
+		Assign<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, assignment.data<int>(), assignment_inv.data<int>(), price.data<float>(), bid.data<int>(),
+									  bid_increments.data<float>(), max_increments.data<float>(), max_idx.data<int>(), i == iters - 1);
+	}
+	CalcDist<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, xyz1.data<float>(), xyz2.data<float>(), dist.data<float>(), assignment.data<int>());
+	//cudaEventRecord(stop);
+	//cudaEventSynchronize(stop);
+	//float elapsedTime;
+	//cudaEventElapsedTime(&elapsedTime,start,stop);
+	//printf("%lf\n", elapsedTime);
+
+	cudaError_t err = cudaGetLastError();
+	  if (err != cudaSuccess) {
+	    printf("error in nnd Output: %s\n", cudaGetErrorString(err));
+	    return 0;
+	  }
+	  return 1;
+}
+
+__global__ void NmDistanceGradKernel(int b, int n, const float * xyz1, const float * xyz2, const float * grad_dist, const int * idx, float * grad_xyz){
+	for (int i = blockIdx.x; i < b; i += gridDim.x) {
+		for (int j = threadIdx.x + blockIdx.y * blockDim.x; j < n; j += blockDim.x * gridDim.y) {
+			float x1 = xyz1[(i * n + j) * 3 + 0];
+			float y1 = xyz1[(i * n + j) * 3 + 1];
+			float z1 = xyz1[(i * n + j) * 3 + 2];
+			int j2 = idx[i * n + j];
+			float x2 = xyz2[(i * n + j2) * 3 + 0];
+			float y2 = xyz2[(i * n + j2) * 3 + 1];
+			float z2 = xyz2[(i * n + j2) * 3 + 2];
+			float g = grad_dist[i * n + j] * 2;
+			atomicAdd(&(grad_xyz[(i * n + j) * 3 + 0]), g * (x1 - x2));
+			atomicAdd(&(grad_xyz[(i * n + j) * 3 + 1]), g * (y1 - y2));
+			atomicAdd(&(grad_xyz[(i * n + j) * 3 + 2]), g * (z1 - z2));
+		}
+	}
+}
+
+int emd_cuda_backward(at::Tensor xyz1, at::Tensor xyz2, at::Tensor gradxyz, at::Tensor graddist, at::Tensor idx){
+	const auto batch_size = xyz1.size(0);
+	const auto n = xyz1.size(1); 
+	const auto m = xyz2.size(1); 
+
+	NmDistanceGradKernel<<<dim3(batch_size, n / 1024, 1), 1024>>>(batch_size, n, xyz1.data<float>(), xyz2.data<float>(), graddist.data<float>(), idx.data<int>(), gradxyz.data<float>());
+	
+	cudaError_t err = cudaGetLastError();
+	  if (err != cudaSuccess) {
+	    printf("error in nnd get grad: %s\n", cudaGetErrorString(err));
+	    return 0;
+	  }
+	  return 1;
+	
+}
diff --git a/lidm/eval/modules/emd/emd_module.py b/lidm/eval/modules/emd/emd_module.py
new file mode 100644
index 0000000000000000000000000000000000000000..3065509eb77942610aab93a85c21f30bf6bf9bed
--- /dev/null
+++ b/lidm/eval/modules/emd/emd_module.py
@@ -0,0 +1,112 @@
+# EMD approximation module (based on auction algorithm)
+# memory complexity: O(n)
+# time complexity: O(n^2 * iter) 
+# author: Minghua Liu
+
+# Input:
+# xyz1, xyz2: [#batch, #points, 3]
+# where xyz1 is the predicted point cloud and xyz2 is the ground truth point cloud 
+# two point clouds should have same size and be normalized to [0, 1]
+# #points should be a multiple of 1024
+# #batch should be no greater than 512
+# eps is a parameter which balances the error rate and the speed of convergence
+# iters is the number of iteration
+# we only calculate gradient for xyz1
+
+# Output:
+# dist: [#batch, #points],  sqrt(dist) -> L2 distance 
+# assignment: [#batch, #points], index of the matched point in the ground truth point cloud
+# the result is an approximation and the assignment is not guranteed to be a bijection
+import importlib
+import os
+import time
+import numpy as np
+import torch
+from torch import nn
+from torch.autograd import Function
+
+emd_found = importlib.find_loader("emd") is not None
+if not emd_found:
+    ## Cool trick from https://github.com/chrdiller
+    print("Jitting EMD 3D")
+
+    from torch.utils.cpp_extension import load
+
+    emd = load(name="emd",
+               sources=[
+                   "/".join(os.path.abspath(__file__).split('/')[:-1] + ["emd.cpp"]),
+                   "/".join(os.path.abspath(__file__).split('/')[:-1] + ["emd_cuda.cu"]),
+               ])
+    print("Loaded JIT 3D CUDA emd")
+else:
+    import emd
+    print("Loaded compiled 3D CUDA emd")
+
+
+class emdFunction(Function):
+    @staticmethod
+    def forward(ctx, xyz1, xyz2, eps, iters):
+        batchsize, n, _ = xyz1.size()
+        _, m, _ = xyz2.size()
+
+        assert (n == m)
+        assert (xyz1.size()[0] == xyz2.size()[0])
+        # assert(n % 1024 == 0)
+        assert (batchsize <= 512)
+
+        xyz1 = xyz1.contiguous().float().cuda()
+        xyz2 = xyz2.contiguous().float().cuda()
+        dist = torch.zeros(batchsize, n, device='cuda').contiguous()
+        assignment = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous() - 1
+        assignment_inv = torch.zeros(batchsize, m, device='cuda', dtype=torch.int32).contiguous() - 1
+        price = torch.zeros(batchsize, m, device='cuda').contiguous()
+        bid = torch.zeros(batchsize, n, device='cuda', dtype=torch.int32).contiguous()
+        bid_increments = torch.zeros(batchsize, n, device='cuda').contiguous()
+        max_increments = torch.zeros(batchsize, m, device='cuda').contiguous()
+        unass_idx = torch.zeros(batchsize * n, device='cuda', dtype=torch.int32).contiguous()
+        max_idx = torch.zeros(batchsize * m, device='cuda', dtype=torch.int32).contiguous()
+        unass_cnt = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
+        unass_cnt_sum = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
+        cnt_tmp = torch.zeros(512, dtype=torch.int32, device='cuda').contiguous()
+
+        emd.forward(xyz1, xyz2, dist, assignment, price, assignment_inv, bid, bid_increments, max_increments, unass_idx,
+                    unass_cnt, unass_cnt_sum, cnt_tmp, max_idx, eps, iters)
+
+        ctx.save_for_backward(xyz1, xyz2, assignment)
+        return dist, assignment
+
+    @staticmethod
+    def backward(ctx, graddist, gradidx):
+        xyz1, xyz2, assignment = ctx.saved_tensors
+        graddist = graddist.contiguous()
+
+        gradxyz1 = torch.zeros(xyz1.size(), device='cuda').contiguous()
+        gradxyz2 = torch.zeros(xyz2.size(), device='cuda').contiguous()
+
+        emd.backward(xyz1, xyz2, gradxyz1, graddist, assignment)
+        return gradxyz1, gradxyz2, None, None
+
+
+class emdModule(nn.Module):
+    def __init__(self):
+        super(emdModule, self).__init__()
+
+    def forward(self, input1, input2, eps, iters):
+        return emdFunction.apply(input1, input2, eps, iters)
+
+
+def test_emd():
+    x1 = torch.rand(20, 8192, 3).cuda()
+    x2 = torch.rand(20, 8192, 3).cuda()
+    emd = emdModule()
+    start_time = time.perf_counter()
+    dis, assigment = emd(x1, x2, 0.05, 3000)
+    print("Input_size: ", x1.shape)
+    print("Runtime: %lfs" % (time.perf_counter() - start_time))
+    print("EMD: %lf" % np.sqrt(dis.cpu()).mean())
+    print("|set(assignment)|: %d" % assigment.unique().numel())
+    assigment = assigment.cpu().numpy()
+    assigment = np.expand_dims(assigment, -1)
+    x2 = np.take_along_axis(x2, assigment, axis=1)
+    d = (x1 - x2) * (x1 - x2)
+    print("Verified EMD: %lf" % np.sqrt(d.cpu().sum(-1)).mean())
diff --git a/lidm/eval/modules/emd/setup.py b/lidm/eval/modules/emd/setup.py
new file mode 100644
index 0000000000000000000000000000000000000000..8588de957bc285372be5a59a6e086af4954dc99b
--- /dev/null
+++ b/lidm/eval/modules/emd/setup.py
@@ -0,0 +1,14 @@
+from setuptools import setup
+from torch.utils.cpp_extension import BuildExtension, CUDAExtension
+
+setup(
+    name='emd',
+    ext_modules=[
+        CUDAExtension('emd', [
+            'emd.cpp',
+            'emd_cuda.cu',
+        ]),
+    ],
+    cmdclass={
+        'build_ext': BuildExtension
+    })
\ No newline at end of file
diff --git a/lidm/models/__init__.py b/lidm/models/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/models/autoencoder.py b/lidm/models/autoencoder.py
new file mode 100644
index 0000000000000000000000000000000000000000..089130695164fbb30460439c78efd96abcae33e5
--- /dev/null
+++ b/lidm/models/autoencoder.py
@@ -0,0 +1,465 @@
+import numpy as np
+import torch
+import pytorch_lightning as pl
+import torch.nn.functional as F
+from contextlib import contextmanager
+
+from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
+
+from ..modules.diffusion import model_lidm, model_ldm
+from ..modules.distributions.distributions import DiagonalGaussianDistribution
+from ..modules.ema import LitEma
+from ..utils.misc_utils import instantiate_from_config
+
+
+class VQModel(pl.LightningModule):
+    def __init__(self,
+                 ddconfig,
+                 n_embed,
+                 embed_dim,
+                 lossconfig=None,
+                 ckpt_path=None,
+                 ignore_keys=[],
+                 image_key="image",
+                 colorize_nlabels=None,
+                 monitor=None,
+                 batch_resize_range=None,
+                 scheduler_config=None,
+                 lr_g_factor=1.0,
+                 remap=None,
+                 sane_index_shape=False,  # tell vector quantizer to return indices as bhw
+                 use_ema=False,
+                 lib_name='ldm',
+                 use_mask=False,
+                 **kwargs
+                 ):
+        super().__init__()
+        self.embed_dim = embed_dim
+        self.n_embed = n_embed
+        self.image_key = image_key
+        self.use_mask = use_mask
+        model_lib = eval(f'model_{lib_name}')
+        self.encoder = model_lib.Encoder(**ddconfig)
+        self.decoder = model_lib.Decoder(**ddconfig)
+        if lossconfig is not None:
+            self.loss = instantiate_from_config(lossconfig)
+        self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
+                                        remap=remap,
+                                        sane_index_shape=sane_index_shape)
+        self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
+        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+        if colorize_nlabels is not None:
+            assert type(colorize_nlabels) == int
+            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+        if monitor is not None:
+            self.monitor = monitor
+        self.batch_resize_range = batch_resize_range
+        if self.batch_resize_range is not None:
+            print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
+
+        self.use_ema = use_ema
+        if self.use_ema:
+            self.model_ema = LitEma(self)
+            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+        if ckpt_path is not None:
+            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+        self.scheduler_config = scheduler_config
+        self.lr_g_factor = lr_g_factor
+
+    @contextmanager
+    def ema_scope(self, context=None):
+        if self.use_ema:
+            self.model_ema.store(self.parameters())
+            self.model_ema.copy_to(self)
+            if context is not None:
+                print(f"{context}: Switched to EMA weights")
+        try:
+            yield None
+        finally:
+            if self.use_ema:
+                self.model_ema.restore(self.parameters())
+                if context is not None:
+                    print(f"{context}: Restored training weights")
+
+    def init_from_ckpt(self, path, ignore_keys=list()):
+        sd = torch.load(path, map_location="cpu")["state_dict"]
+        keys = list(sd.keys())
+        for k in keys:
+            for ik in ignore_keys:
+                if k.startswith(ik):
+                    print("Deleting key {} from state_dict.".format(k))
+                    del sd[k]
+        missing, unexpected = self.load_state_dict(sd, strict=False)
+        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+        if len(missing) > 0:
+            print(f"Missing Keys: {missing}")
+            print(f"Unexpected Keys: {unexpected}")
+
+    def on_train_batch_end(self, *args, **kwargs):
+        if self.use_ema:
+            self.model_ema(self)
+
+    def encode(self, x):
+        h = self.encoder(x)
+        h = self.quant_conv(h)
+        quant, emb_loss, info = self.quantize(h)
+        return quant, emb_loss, info
+
+    def encode_to_prequant(self, x):
+        h = self.encoder(x)
+        h = self.quant_conv(h)
+        return h
+
+    def decode(self, quant):
+        quant = self.post_quant_conv(quant)
+        dec = self.decoder(quant)
+        return dec
+
+    def decode_code(self, code_b):
+        quant_b = self.quantize.embed_code(code_b)
+        dec = self.decode(quant_b)
+        return dec
+
+    def forward(self, input, return_pred_indices=False):
+        quant, diff, (_, _, ind) = self.encode(input)
+        dec = self.decode(quant)
+        if return_pred_indices:
+            return dec, diff, ind
+        return dec, diff
+
+    def get_input(self, batch, k):
+        x = batch[k]
+        # if len(x.shape) == 3:
+        #     x = x[..., None]
+
+        if self.batch_resize_range is not None:
+            lower_size = self.batch_resize_range[0]
+            upper_size = self.batch_resize_range[1]
+            if self.global_step <= 4:
+                # do the first few batches with max size to avoid later oom
+                new_resize = upper_size
+            else:
+                new_resize = np.random.choice(np.arange(lower_size, upper_size + 16, 16))
+            if new_resize != x.shape[2]:
+                x = F.interpolate(x, size=new_resize, mode="bicubic")
+            x = x.detach()
+        return x
+
+    def get_mask(self, batch):
+        mask = batch['mask']
+        # if len(mask.shape) == 3:
+        #     mask = mask[..., None]
+        return mask
+
+    def training_step(self, batch, batch_idx, optimizer_idx):
+        # https://github.com/pytorch/pytorch/issues/37142
+        # try not to fool the heuristics
+        x = self.get_input(batch, self.image_key)
+        m = self.get_mask(batch) if self.use_mask else None
+        x_rec, qloss, ind = self(x, return_pred_indices=True)
+
+        if optimizer_idx == 0:
+            # autoencoder
+            aeloss, log_dict_ae = self.loss(qloss, x, x_rec, optimizer_idx, self.global_step,
+                                            last_layer=self.get_last_layer(), split="train",
+                                            predicted_indices=None, masks=m)
+            self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
+            return aeloss
+
+        if optimizer_idx == 1:
+            # discriminator
+            discloss, log_dict_disc = self.loss(qloss, x, x_rec, optimizer_idx, self.global_step,
+                                                last_layer=self.get_last_layer(), split="train",
+                                                masks=m)
+            self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
+            return discloss
+
+    def validation_step(self, batch, batch_idx):
+        log_dict = self._validation_step(batch, batch_idx)
+        if self.use_ema:
+            with self.ema_scope():
+                log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
+        return log_dict
+
+    def _validation_step(self, batch, batch_idx, suffix=""):
+        x = self.get_input(batch, self.image_key)
+        m = self.get_mask(batch) if self.use_mask else None
+        xrec, qloss, ind = self(x, return_pred_indices=True)
+        aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
+                                        self.global_step,
+                                        last_layer=self.get_last_layer(),
+                                        split="val" + suffix,
+                                        predicted_indices=None,
+                                        masks=m
+                                        )
+
+        discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
+                                            self.global_step,
+                                            last_layer=self.get_last_layer(),
+                                            split="val" + suffix,
+                                            predicted_indices=None,
+                                            masks=m
+                                            )
+        rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
+        self.log(f"val{suffix}/rec_loss", rec_loss,
+                 prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
+        self.log(f"val{suffix}/aeloss", aeloss,
+                 prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
+        del log_dict_ae[f"val{suffix}/rec_loss"]
+        self.log_dict(log_dict_ae)
+        self.log_dict(log_dict_disc)
+        return self.log_dict
+
+    def configure_optimizers(self):
+        lr_d = self.learning_rate
+        lr_g = self.lr_g_factor * self.learning_rate
+        # print("lr_d", lr_d)
+        # print("lr_g", lr_g)
+        opt_ae = torch.optim.Adam(list(self.encoder.parameters()) +
+                                  list(self.decoder.parameters()) +
+                                  list(self.quantize.parameters()) +
+                                  list(self.quant_conv.parameters()) +
+                                  list(self.post_quant_conv.parameters()),
+                                  lr=lr_g, betas=(0.5, 0.9))
+        opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+                                    lr=lr_d, betas=(0.5, 0.9))
+
+        if self.scheduler_config is not None:
+            scheduler = instantiate_from_config(self.scheduler_config)
+
+            print("Setting up LambdaLR scheduler...")
+            scheduler = [
+                {
+                    'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
+                    'interval': 'step',
+                    'frequency': 1
+                },
+                {
+                    'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
+                    'interval': 'step',
+                    'frequency': 1
+                },
+            ]
+            return [opt_ae, opt_disc], scheduler
+        return [opt_ae, opt_disc], []
+
+    def get_last_layer(self):
+        return self.decoder.conv_out.weight
+
+    @torch.no_grad()
+    def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
+        log = dict()
+        x = self.get_input(batch, self.image_key)
+        x = x.to(self.device)
+        if only_inputs:
+            log["inputs"] = x
+            return log
+        xrec, _ = self(x)
+        if self.use_mask:
+            mask = xrec[:, 1:2] < 0.
+            xrec = xrec[:, 0:1]
+            xrec[mask] = -1.
+        log["inputs"] = x
+        log["reconstructions"] = xrec
+        if plot_ema:
+            with self.ema_scope():
+                xrec_ema, _ = self(x)
+                log["reconstructions_ema"] = xrec_ema
+        return log
+
+    def to_rgb(self, x):
+        assert self.image_key == "segmentation"
+        if not hasattr(self, "colorize"):
+            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+        x = F.conv2d(x, weight=self.colorize)
+        x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+        return x
+
+
+class VQModelInterface(VQModel):
+    def __init__(self, embed_dim, *args, **kwargs):
+        super().__init__(embed_dim=embed_dim, *args, **kwargs)
+        self.embed_dim = embed_dim
+
+    def encode(self, x):
+        h = self.encoder(x)
+        h = self.quant_conv(h)
+        return h
+
+    def decode(self, h, force_not_quantize=False):
+        # also go through quantization layer
+        if not force_not_quantize:
+            quant, emb_loss, info = self.quantize(h)
+        else:
+            quant = h
+        quant = self.post_quant_conv(quant)
+        dec = self.decoder(quant)
+        if self.use_mask:
+            mask = dec[:, 1:2] < 0.
+            dec = dec[:, 0:1]
+            dec[mask] = -1.
+        return dec
+
+
+class AutoencoderKL(pl.LightningModule):
+    def __init__(self,
+                 ddconfig,
+                 lossconfig,
+                 embed_dim,
+                 ckpt_path=None,
+                 ignore_keys=[],
+                 image_key="image",
+                 colorize_nlabels=None,
+                 monitor=None,
+                 lib_name='ldm',
+                 use_mask=False
+                 ):
+        super().__init__()
+        self.image_key = image_key
+        self.use_mask = use_mask
+        model_lib = eval(f'model_{lib_name}')
+        self.encoder = model_lib.Encoder(**ddconfig)
+        self.decoder = model_lib.Decoder(**ddconfig)
+        self.loss = instantiate_from_config(lossconfig)
+        assert ddconfig["double_z"]
+        self.quant_conv = torch.nn.Conv2d(2 * ddconfig["z_channels"], 2 * embed_dim, 1)
+        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
+        self.embed_dim = embed_dim
+        if colorize_nlabels is not None:
+            assert type(colorize_nlabels) == int
+            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
+        if monitor is not None:
+            self.monitor = monitor
+        if ckpt_path is not None:
+            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
+
+    def init_from_ckpt(self, path, ignore_keys=list()):
+        sd = torch.load(path, map_location="cpu")["state_dict"]
+        keys = list(sd.keys())
+        for k in keys:
+            for ik in ignore_keys:
+                if k.startswith(ik):
+                    print("Deleting key {} from state_dict.".format(k))
+                    del sd[k]
+        self.load_state_dict(sd, strict=False)
+        print(f"Restored from {path}")
+
+    def encode(self, x):
+        h = self.encoder(x)
+        moments = self.quant_conv(h)
+        posterior = DiagonalGaussianDistribution(moments)
+        return posterior
+
+    def decode(self, z):
+        z = self.post_quant_conv(z)
+        dec = self.decoder(z)
+        return dec
+
+    def forward(self, input, sample_posterior=True):
+        posterior = self.encode(input)
+        if sample_posterior:
+            z = posterior.sample()
+        else:
+            z = posterior.mode()
+        dec = self.decode(z)
+        return dec, posterior
+
+    def get_input(self, batch, k):
+        x = batch[k]
+        if len(x.shape) == 3:
+            x = x[:, None]
+        return x
+
+    def training_step(self, batch, batch_idx, optimizer_idx):
+        inputs = self.get_input(batch, self.image_key)
+        reconstructions, posterior = self(inputs)
+
+        if optimizer_idx == 0:
+            # train encoder+decoder+logvar
+            aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+                                            last_layer=self.get_last_layer(), split="train")
+            self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+            self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+            return aeloss
+
+        if optimizer_idx == 1:
+            # train the discriminator
+            discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
+                                                last_layer=self.get_last_layer(), split="train")
+
+            self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
+            self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
+            return discloss
+
+    def validation_step(self, batch, batch_idx):
+        inputs = self.get_input(batch, self.image_key)
+        reconstructions, posterior = self(inputs)
+        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
+                                        last_layer=self.get_last_layer(), split="val")
+        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
+                                            last_layer=self.get_last_layer(), split="val")
+
+        self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
+        self.log_dict(log_dict_ae)
+        self.log_dict(log_dict_disc)
+        return self.log_dict
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        opt_ae = torch.optim.Adam(list(self.encoder.parameters()) +
+                                  list(self.decoder.parameters()) +
+                                  list(self.quant_conv.parameters()) +
+                                  list(self.post_quant_conv.parameters()),
+                                  lr=lr, betas=(0.5, 0.9))
+        opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
+                                    lr=lr, betas=(0.5, 0.9))
+        return [opt_ae, opt_disc], []
+
+    def get_last_layer(self):
+        return self.decoder.conv_out.weight
+
+    @torch.no_grad()
+    def log_images(self, batch, only_inputs=False, **kwargs):
+        log = dict()
+        x = self.get_input(batch, self.image_key)
+        x = x.to(self.device)
+        if not only_inputs:
+            xrec, posterior = self(x)
+            if x.shape[1] > 3:
+                # colorize with random projection
+                assert xrec.shape[1] > 3
+                x = self.to_rgb(x)
+                xrec = self.to_rgb(xrec)
+            log["samples"] = self.decode(torch.randn_like(posterior.sample()))
+            log["reconstructions"] = xrec
+        log["inputs"] = x
+        return log
+
+    def to_rgb(self, x):
+        assert self.image_key == "segmentation"
+        if not hasattr(self, "colorize"):
+            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
+        x = F.conv2d(x, weight=self.colorize)
+        x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+        return x
+
+
+class IdentityFirstStage(torch.nn.Module):
+    def __init__(self, *args, vq_interface=False, **kwargs):
+        self.vq_interface = vq_interface
+        super().__init__()
+
+    def encode(self, x, *args, **kwargs):
+        return x
+
+    def decode(self, x, *args, **kwargs):
+        return x
+
+    def quantize(self, x, *args, **kwargs):
+        if self.vq_interface:
+            return x, None, [None, None, None]
+        return x
+
+    def forward(self, x, *args, **kwargs):
+        return x
diff --git a/lidm/models/diffusion/__init__.py b/lidm/models/diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/models/diffusion/classifier.py b/lidm/models/diffusion/classifier.py
new file mode 100644
index 0000000000000000000000000000000000000000..82d2d6d0ef132a83e25bc84e324252a9aa1d513b
--- /dev/null
+++ b/lidm/models/diffusion/classifier.py
@@ -0,0 +1,267 @@
+import os
+import torch
+import pytorch_lightning as pl
+from omegaconf import OmegaConf
+from torch.nn import functional as F
+from torch.optim import AdamW
+from torch.optim.lr_scheduler import LambdaLR
+from copy import deepcopy
+from einops import rearrange
+from glob import glob
+from natsort import natsorted
+
+from ...modules.diffusion.openaimodel import EncoderUNetModel, UNetModel
+from ...utils.misc_utils import log_txt_as_img, default, ismap, instantiate_from_config
+
+__models__ = {
+    'class_label': EncoderUNetModel,
+    'segmentation': UNetModel
+}
+
+
+def disabled_train(self, mode=True):
+    """Overwrite model.train with this function to make sure train/eval mode
+    does not change anymore."""
+    return self
+
+
+class NoisyLatentImageClassifier(pl.LightningModule):
+
+    def __init__(self,
+                 diffusion_path,
+                 num_classes,
+                 ckpt_path=None,
+                 pool='attention',
+                 label_key=None,
+                 diffusion_ckpt_path=None,
+                 scheduler_config=None,
+                 weight_decay=1.e-2,
+                 log_steps=10,
+                 monitor='val/loss',
+                 *args,
+                 **kwargs):
+        super().__init__(*args, **kwargs)
+        self.num_classes = num_classes
+        # get latest config of diffusion model
+        diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1]
+        self.diffusion_config = OmegaConf.load(diffusion_config).model
+        self.diffusion_config.params.ckpt_path = diffusion_ckpt_path
+        self.load_diffusion()
+
+        self.monitor = monitor
+        self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1
+        self.log_time_interval = self.diffusion_model.num_timesteps // log_steps
+        self.log_steps = log_steps
+
+        self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \
+            else self.diffusion_model.cond_stage_key
+
+        assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params'
+
+        if self.label_key not in __models__:
+            raise NotImplementedError()
+
+        self.load_classifier(ckpt_path, pool)
+
+        self.scheduler_config = scheduler_config
+        self.use_scheduler = self.scheduler_config is not None
+        self.weight_decay = weight_decay
+
+    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+        sd = torch.load(path, map_location="cpu")
+        if "state_dict" in list(sd.keys()):
+            sd = sd["state_dict"]
+        keys = list(sd.keys())
+        for k in keys:
+            for ik in ignore_keys:
+                if k.startswith(ik):
+                    print("Deleting key {} from state_dict.".format(k))
+                    del sd[k]
+        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+            sd, strict=False)
+        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+        if len(missing) > 0:
+            print(f"Missing Keys: {missing}")
+        if len(unexpected) > 0:
+            print(f"Unexpected Keys: {unexpected}")
+
+    def load_diffusion(self):
+        model = instantiate_from_config(self.diffusion_config)
+        self.diffusion_model = model.eval()
+        self.diffusion_model.train = disabled_train
+        for param in self.diffusion_model.parameters():
+            param.requires_grad = False
+
+    def load_classifier(self, ckpt_path, pool):
+        model_config = deepcopy(self.diffusion_config.params.unet_config.params)
+        model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels
+        model_config.out_channels = self.num_classes
+        if self.label_key == 'class_label':
+            model_config.pool = pool
+
+        self.model = __models__[self.label_key](**model_config)
+        if ckpt_path is not None:
+            print('#####################################################################')
+            print(f'load from ckpt "{ckpt_path}"')
+            print('#####################################################################')
+            self.init_from_ckpt(ckpt_path)
+
+    @torch.no_grad()
+    def get_x_noisy(self, x, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x))
+        continuous_sqrt_alpha_cumprod = None
+        if self.diffusion_model.use_continuous_noise:
+            continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1)
+            # todo: make sure t+1 is correct here
+
+        return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise,
+                                             continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod)
+
+    def forward(self, x_noisy, t, *args, **kwargs):
+        return self.model(x_noisy, t)
+
+    @torch.no_grad()
+    def get_input(self, batch, k):
+        x = batch[k]
+        if len(x.shape) == 3:
+            x = x[..., None]
+        x = rearrange(x, 'b h w c -> b c h w')
+        x = x.to(memory_format=torch.contiguous_format).float()
+        return x
+
+    @torch.no_grad()
+    def get_conditioning(self, batch, k=None):
+        if k is None:
+            k = self.label_key
+        assert k is not None, 'Needs to provide label key'
+
+        targets = batch[k].to(self.device)
+
+        if self.label_key == 'segmentation':
+            targets = rearrange(targets, 'b h w c -> b c h w')
+            for down in range(self.numd):
+                h, w = targets.shape[-2:]
+                targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest')
+
+            # targets = rearrange(targets,'b c h w -> b h w c')
+
+        return targets
+
+    def compute_top_k(self, logits, labels, k, reduction="mean"):
+        _, top_ks = torch.topk(logits, k, dim=1)
+        if reduction == "mean":
+            return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item()
+        elif reduction == "none":
+            return (top_ks == labels[:, None]).float().sum(dim=-1)
+
+    def on_train_epoch_start(self):
+        # save some memory
+        self.diffusion_model.model.to('cpu')
+
+    @torch.no_grad()
+    def write_logs(self, loss, logits, targets):
+        log_prefix = 'train' if self.training else 'val'
+        log = {}
+        log[f"{log_prefix}/loss"] = loss.mean()
+        log[f"{log_prefix}/acc@1"] = self.compute_top_k(
+            logits, targets, k=1, reduction="mean"
+        )
+        log[f"{log_prefix}/acc@5"] = self.compute_top_k(
+            logits, targets, k=5, reduction="mean"
+        )
+
+        self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True)
+        self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False)
+        self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True)
+        lr = self.optimizers().param_groups[0]['lr']
+        self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True)
+
+    def shared_step(self, batch, t=None):
+        x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key)
+        targets = self.get_conditioning(batch)
+        if targets.dim() == 4:
+            targets = targets.argmax(dim=1)
+        if t is None:
+            t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long()
+        else:
+            t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long()
+        x_noisy = self.get_x_noisy(x, t)
+        logits = self(x_noisy, t)
+
+        loss = F.cross_entropy(logits, targets, reduction='none')
+
+        self.write_logs(loss.detach(), logits.detach(), targets.detach())
+
+        loss = loss.mean()
+        return loss, logits, x_noisy, targets
+
+    def training_step(self, batch, batch_idx):
+        loss, *_ = self.shared_step(batch)
+        return loss
+
+    def reset_noise_accs(self):
+        self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in
+                          range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)}
+
+    def on_validation_start(self):
+        self.reset_noise_accs()
+
+    @torch.no_grad()
+    def validation_step(self, batch, batch_idx):
+        loss, *_ = self.shared_step(batch)
+
+        for t in self.noisy_acc:
+            _, logits, _, targets = self.shared_step(batch, t)
+            self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean'))
+            self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean'))
+
+        return loss
+
+    def configure_optimizers(self):
+        optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay)
+
+        if self.use_scheduler:
+            scheduler = instantiate_from_config(self.scheduler_config)
+
+            print("Setting up LambdaLR scheduler...")
+            scheduler = [
+                {
+                    'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule),
+                    'interval': 'step',
+                    'frequency': 1
+                }]
+            return [optimizer], scheduler
+
+        return optimizer
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, *args, **kwargs):
+        log = dict()
+        x = self.get_input(batch, self.diffusion_model.first_stage_key)
+        log['inputs'] = x
+
+        y = self.get_conditioning(batch)
+
+        if self.label_key == 'class_label':
+            y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
+            log['labels'] = y
+
+        if ismap(y):
+            log['labels'] = self.diffusion_model.to_rgb(y)
+
+            for step in range(self.log_steps):
+                current_time = step * self.log_time_interval
+
+                _, logits, x_noisy, _ = self.shared_step(batch, t=current_time)
+
+                log[f'inputs@t{current_time}'] = x_noisy
+
+                pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes)
+                pred = rearrange(pred, 'b h w c -> b c h w')
+
+                log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred)
+
+        for key in log:
+            log[key] = log[key][:N]
+
+        return log
diff --git a/lidm/models/diffusion/ddim.py b/lidm/models/diffusion/ddim.py
new file mode 100644
index 0000000000000000000000000000000000000000..8c49dd42cac10dd1743eab581557633124e95826
--- /dev/null
+++ b/lidm/models/diffusion/ddim.py
@@ -0,0 +1,204 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+
+from ...modules.basic import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+from ...utils.misc_utils import print_fn
+
+
+class DDIMSampler(object):
+    def __init__(self, model, schedule="linear", **kwargs):
+        super().__init__()
+        self.model = model
+        self.ddpm_num_timesteps = model.num_timesteps
+        self.schedule = schedule
+
+    def register_buffer(self, name, attr):
+        if type(attr) == torch.Tensor:
+            if attr.device != torch.device("cuda"):
+                attr = attr.to(torch.device("cuda"))
+        setattr(self, name, attr)
+
+    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
+        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+                                                  num_ddpm_timesteps=self.ddpm_num_timesteps, verbose=verbose)
+        alphas_cumprod = self.model.alphas_cumprod
+        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+        self.register_buffer('betas', to_torch(self.model.betas))
+        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+        # ddim sampling parameters
+        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+                                                                                   ddim_timesteps=self.ddim_timesteps,
+                                                                                   eta=ddim_eta, verbose=verbose)
+        self.register_buffer('ddim_sigmas', ddim_sigmas)
+        self.register_buffer('ddim_alphas', ddim_alphas)
+        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+    @torch.no_grad()
+    def sample(self,
+               S,
+               batch_size,
+               shape,
+               conditioning=None,
+               callback=None,
+               normals_sequence=None,
+               img_callback=None,
+               quantize_x0=False,
+               eta=0.,
+               mask=None,
+               x0=None,
+               temperature=1.,
+               noise_dropout=0.,
+               score_corrector=None,
+               corrector_kwargs=None,
+               verbose=False,
+               disable_tqdm=True,
+               x_T=None,
+               log_every_t=100,
+               unconditional_guidance_scale=1.,
+               unconditional_conditioning=None,
+               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+               **kwargs
+               ):
+        if conditioning is not None:
+            if isinstance(conditioning, dict):
+                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+                if cbs != batch_size:
+                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+            else:
+                if conditioning.shape[0] != batch_size:
+                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+        # sampling
+        C, H, W = shape
+        size = (batch_size, C, H, W)
+        print_fn(f'Data shape for DDIM sampling is {size}, eta {eta}', verbose)
+
+        samples, intermediates = self.ddim_sampling(conditioning, size,
+                                                    callback=callback,
+                                                    img_callback=img_callback,
+                                                    quantize_denoised=quantize_x0,
+                                                    mask=mask, x0=x0,
+                                                    ddim_use_original_steps=False,
+                                                    noise_dropout=noise_dropout,
+                                                    temperature=temperature,
+                                                    score_corrector=score_corrector,
+                                                    corrector_kwargs=corrector_kwargs,
+                                                    x_T=x_T,
+                                                    log_every_t=log_every_t,
+                                                    unconditional_guidance_scale=unconditional_guidance_scale,
+                                                    unconditional_conditioning=unconditional_conditioning,
+                                                    verbose=verbose, disable_tqdm=disable_tqdm)
+        return samples, intermediates
+
+    @torch.no_grad()
+    def ddim_sampling(self, cond, shape,
+                      x_T=None, ddim_use_original_steps=False,
+                      callback=None, timesteps=None, quantize_denoised=False,
+                      mask=None, x0=None, img_callback=None, log_every_t=100,
+                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+                      unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=False, disable_tqdm=True):
+        device = self.model.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        if timesteps is None:
+            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+        elif timesteps is not None and not ddim_use_original_steps:
+            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+            timesteps = self.ddim_timesteps[:subset_end]
+
+        intermediates = {'x_inter': [img], 'pred_x0': [img]}
+        time_range = reversed(range(0, timesteps)) if ddim_use_original_steps else np.flip(timesteps)
+        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+        print_fn(f"Running DDIM Sampling with {total_steps} timesteps", verbose)
+
+        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps, disable=disable_tqdm)
+
+        for i, step in enumerate(iterator):
+            index = total_steps - i - 1
+            ts = torch.full((b,), step, device=device, dtype=torch.long)
+
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.model.q_sample(x0, ts)
+                img = img_orig * mask + (1. - mask) * img
+
+            outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+                                      quantize_denoised=quantize_denoised, temperature=temperature,
+                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
+                                      corrector_kwargs=corrector_kwargs,
+                                      unconditional_guidance_scale=unconditional_guidance_scale,
+                                      unconditional_conditioning=unconditional_conditioning)
+            img, pred_x0 = outs
+            if callback: callback(i)
+            if img_callback: img_callback(pred_x0, i)
+
+            if index % log_every_t == 0 or index == total_steps - 1:
+                intermediates['x_inter'].append(img)
+                intermediates['pred_x0'].append(pred_x0)
+
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+                      unconditional_guidance_scale=1., unconditional_conditioning=None):
+        b, *_, device = *x.shape, x.device
+
+        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+            e_t = self.model.apply_model(x, t, c)
+        else:
+            x_in = torch.cat([x] * 2)
+            t_in = torch.cat([t] * 2)
+            c_in = torch.cat([unconditional_conditioning, c])
+            e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+            e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+        if score_corrector is not None:
+            assert self.model.parameterization == "eps"
+            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+        # select parameters corresponding to the currently considered timestep
+        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device)
+
+        # current prediction for x_0
+        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+        if quantize_denoised:
+            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+        # direction pointing to x_t
+        dir_xt = (1. - a_prev - sigma_t ** 2).sqrt() * e_t
+        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.:
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+        return x_prev, pred_x0
diff --git a/lidm/models/diffusion/ddpm.py b/lidm/models/diffusion/ddpm.py
new file mode 100644
index 0000000000000000000000000000000000000000..706e1c14188e40c3edc11d123ea74768e237cf1e
--- /dev/null
+++ b/lidm/models/diffusion/ddpm.py
@@ -0,0 +1,1455 @@
+"""
+wild mixture of
+https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
+https://github.com/CompVis/taming-transformers
+-- merci
+"""
+
+import torch
+import torch.nn as nn
+import numpy as np
+import pytorch_lightning as pl
+from torch.optim.lr_scheduler import LambdaLR
+from einops import rearrange, repeat
+from contextlib import contextmanager
+from functools import partial
+from tqdm import tqdm
+from torchvision.utils import make_grid
+from pytorch_lightning.utilities.distributed import rank_zero_only
+
+from ...utils.misc_utils import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config, print_fn
+from ...modules.ema import LitEma
+from ...modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
+from ...models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
+from ...modules.basic import make_beta_schedule, extract_into_tensor, noise_like
+from ...models.diffusion.ddim import DDIMSampler
+
+__conditioning_keys__ = {'concat': 'c_concat',
+                         'crossattn': 'c_crossattn',
+                         'adm': 'y'}
+
+
+def disabled_train(self, mode=True):
+    """Overwrite model.train with this function to make sure train/eval mode
+    does not change anymore."""
+    return self
+
+
+def uniform_on_device(r1, r2, shape, device):
+    return (r1 - r2) * torch.rand(*shape, device=device) + r2
+
+
+class DDPM(pl.LightningModule):
+    # classic DDPM with Gaussian diffusion, in image space
+    def __init__(self,
+                 unet_config,
+                 timesteps=1000,
+                 beta_schedule="linear",
+                 loss_type="l2",
+                 ckpt_path=None,
+                 ignore_keys=[],
+                 load_only_unet=False,
+                 monitor="val/loss",
+                 use_ema=True,
+                 first_stage_key="image",
+                 image_size=[256, 256],
+                 channels=3,
+                 log_every_t=100,
+                 clip_denoised=True,
+                 linear_start=1e-4,
+                 linear_end=2e-2,
+                 cosine_s=8e-3,
+                 given_betas=None,
+                 original_elbo_weight=0.,
+                 v_posterior=0.,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
+                 l_simple_weight=1.,
+                 conditioning_key=None,
+                 parameterization="eps",  # all assuming fixed variance schedules
+                 scheduler_config=None,
+                 use_positional_encodings=False,
+                 learn_logvar=False,
+                 logvar_init=0.,
+                 verbose=False
+                 ):
+        super().__init__()
+        assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
+        self.print_fn = partial(print_fn, verbose=verbose)
+        self.verbose = verbose
+        self.parameterization = parameterization
+        self.print_fn(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
+        self.cond_stage_model = None
+        self.clip_denoised = clip_denoised
+        self.log_every_t = log_every_t
+        self.first_stage_key = first_stage_key
+        self.image_size = image_size  # try conv?
+        self.channels = channels
+        self.use_positional_encodings = use_positional_encodings
+        self.model = DiffusionWrapper(unet_config, conditioning_key)
+        count_params(self.model, verbose=True)
+        self.use_ema = use_ema
+        if self.use_ema:
+            self.model_ema = LitEma(self.model)
+            self.print_fn(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
+
+        self.use_scheduler = scheduler_config is not None
+        if self.use_scheduler:
+            self.scheduler_config = scheduler_config
+
+        self.v_posterior = v_posterior
+        self.original_elbo_weight = original_elbo_weight
+        self.l_simple_weight = l_simple_weight
+
+        if monitor is not None:
+            self.monitor = monitor
+        if ckpt_path is not None:
+            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
+
+        self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
+                               linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
+
+        self.loss_type = loss_type
+
+        self.learn_logvar = learn_logvar
+        self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
+        self.logvar = nn.Parameter(self.logvar, requires_grad=self.learn_logvar)
+
+    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
+                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+        if exists(given_betas):
+            betas = given_betas
+        else:
+            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
+                                       cosine_s=cosine_s)
+        alphas = 1. - betas
+        alphas_cumprod = np.cumprod(alphas, axis=0)
+        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
+
+        timesteps, = betas.shape
+        self.num_timesteps = int(timesteps)
+        self.linear_start = linear_start
+        self.linear_end = linear_end
+        assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
+
+        to_torch = partial(torch.tensor, dtype=torch.float32)
+
+        self.register_buffer('betas', to_torch(betas))
+        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
+        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
+        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
+        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
+        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
+
+        # calculations for posterior q(x_{t-1} | x_t, x_0)
+        posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
+                1. - alphas_cumprod) + self.v_posterior * betas
+        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
+        self.register_buffer('posterior_variance', to_torch(posterior_variance))
+        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
+        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
+        self.register_buffer('posterior_mean_coef1', to_torch(
+            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
+        self.register_buffer('posterior_mean_coef2', to_torch(
+            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
+
+        if self.parameterization == "eps":
+            lvlb_weights = self.betas ** 2 / (
+                    2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
+        elif self.parameterization == "x0":
+            lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
+        else:
+            raise NotImplementedError("mu not supported")
+
+        lvlb_weights[0] = lvlb_weights[1]
+        self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
+        assert not torch.isnan(self.lvlb_weights).all()
+
+    @contextmanager
+    def ema_scope(self, context=None):
+        if self.use_ema:
+            self.model_ema.store(self.model.parameters())
+            self.model_ema.copy_to(self.model)
+            if context is not None:
+                self.print_fn(f"{context}: Switched to EMA weights")
+        try:
+            yield None
+        finally:
+            if self.use_ema:
+                self.model_ema.restore(self.model.parameters())
+                if context is not None:
+                    self.print_fn(f"{context}: Restored training weights")
+
+    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
+        sd = torch.load(path, map_location="cpu")
+        if "state_dict" in list(sd.keys()):
+            sd = sd["state_dict"]
+        keys = list(sd.keys())
+        for k in keys:
+            for ik in ignore_keys:
+                if k.startswith(ik):
+                    self.print_fn("Deleting key {} from state_dict.".format(k))
+                    del sd[k]
+        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
+            sd, strict=False)
+        self.print_fn(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
+        if len(missing) > 0:
+            self.print_fn(f"Missing Keys: {missing}")
+        if len(unexpected) > 0:
+            self.print_fn(f"Unexpected Keys: {unexpected}")
+
+    def q_mean_variance(self, x_start, t):
+        """
+        Get the distribution q(x_t | x_0).
+        :param x_start: the [N x C x ...] tensor of noiseless inputs.
+        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
+        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
+        """
+        mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
+        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
+        log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
+        return mean, variance, log_variance
+
+    def predict_start_from_noise(self, x_t, t, noise):
+        return (
+                extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
+                extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
+        )
+
+    def q_posterior(self, x_start, x_t, t):
+        posterior_mean = (
+                extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
+                extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
+        )
+        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
+        posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
+        return posterior_mean, posterior_variance, posterior_log_variance_clipped
+
+    def p_mean_variance(self, x, t, clip_denoised: bool):
+        model_out = self.model(x, t)
+        if self.parameterization == "eps":
+            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+        elif self.parameterization == "x0":
+            x_recon = model_out
+        if clip_denoised:
+            x_recon.clamp_(-1., 1.)
+
+        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+        return model_mean, posterior_variance, posterior_log_variance
+
+    @torch.no_grad()
+    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
+        b, *_, device = *x.shape, x.device
+        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
+        noise = noise_like(x.shape, device, repeat_noise)
+        # no noise when t == 0
+        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+    @torch.no_grad()
+    def p_sample_loop(self, shape, return_intermediates=False):
+        device = self.betas.device
+        b = shape[0]
+        img = torch.randn(shape, device=device)
+        intermediates = [img]
+        for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
+            img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
+                                clip_denoised=self.clip_denoised)
+            if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
+                intermediates.append(img)
+        if return_intermediates:
+            return img, intermediates
+        return img
+
+    @torch.no_grad()
+    def sample(self, batch_size=16, return_intermediates=False):
+        image_size = self.image_size
+        channels = self.channels
+        return self.p_sample_loop((batch_size, channels, *image_size),
+                                  return_intermediates=return_intermediates)
+
+    def q_sample(self, x_start, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
+                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
+
+    def get_loss(self, pred, target, mean=True):
+        if self.loss_type == 'l1':
+            loss = (target - pred).abs()
+            if mean:
+                loss = loss.mean()
+        elif self.loss_type == 'l2':
+            if mean:
+                loss = torch.nn.functional.mse_loss(target, pred)
+            else:
+                loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
+        else:
+            raise NotImplementedError("unknown loss type '{loss_type}'")
+
+        return loss
+
+    def p_losses(self, x_start, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+        model_out = self.model(x_noisy, t)
+
+        loss_dict = {}
+        if self.parameterization == "eps":
+            target = noise
+        elif self.parameterization == "x0":
+            target = x_start
+        else:
+            raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
+
+        loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
+
+        log_prefix = 'train' if self.training else 'val'
+
+        loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
+        loss_simple = loss.mean() * self.l_simple_weight
+
+        loss_vlb = (self.lvlb_weights[t] * loss).mean()
+        loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
+
+        loss = loss_simple + self.original_elbo_weight * loss_vlb
+
+        loss_dict.update({f'{log_prefix}/loss': loss})
+
+        return loss, loss_dict
+
+    def forward(self, x, *args, **kwargs):
+        # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
+        # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
+        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+        return self.p_losses(x, t, *args, **kwargs)
+
+    def get_input(self, batch, k):
+        x = batch[k]
+        # if len(x.shape) == 3:
+        #     x = x[..., None]
+        return x
+
+    def shared_step(self, batch):
+        x = self.get_input(batch, self.first_stage_key)
+        loss, loss_dict = self(x)
+        return loss, loss_dict
+
+    def training_step(self, batch, batch_idx):
+        loss, loss_dict = self.shared_step(batch)
+
+        self.log_dict(loss_dict, prog_bar=True,
+                      logger=True, on_step=True, on_epoch=True)
+
+        self.log("global_step", self.global_step,
+                 prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+        if self.use_scheduler:
+            lr = self.optimizers().param_groups[0]['lr']
+            self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
+
+        return loss
+
+    @torch.no_grad()
+    def validation_step(self, batch, batch_idx):
+        _, loss_dict_no_ema = self.shared_step(batch)
+        with self.ema_scope():
+            _, loss_dict_ema = self.shared_step(batch)
+            loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
+        self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+        self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
+
+    def on_train_batch_end(self, *args, **kwargs):
+        if self.use_ema:
+            self.model_ema(self.model)
+
+    def _get_rows_from_list(self, samples):
+        n_imgs_per_row = len(samples)
+        denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
+        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+        return denoise_grid
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
+        log = dict()
+        x = self.get_input(batch, self.first_stage_key)
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        x = x.to(self.device)[:N]
+        log["inputs"] = x
+
+        # get diffusion row
+        diffusion_row = list()
+        x_start = x[:n_row]
+
+        for t in range(self.num_timesteps):
+            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+                t = t.to(self.device).long()
+                noise = torch.randn_like(x_start)
+                x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+                diffusion_row.append(x_noisy)
+
+        log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
+
+        if sample:
+            # get denoise row
+            with self.ema_scope("Plotting"):
+                samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
+
+            log["samples"] = samples
+            log["denoise_row"] = self._get_rows_from_list(denoise_row)
+
+        if return_keys:
+            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+                return log
+            else:
+                return {key: log[key] for key in return_keys}
+        return log
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        params = list(self.model.parameters())
+        if self.learn_logvar:
+            params = params + [self.logvar]
+        opt = torch.optim.AdamW(params, lr=lr)
+        return opt
+
+
+class LatentDiffusion(DDPM):
+    """main class"""
+
+    def __init__(self,
+                 first_stage_config,
+                 cond_stage_config,
+                 num_timesteps_cond=None,
+                 cond_stage_key="image",
+                 cond_stage_trainable=False,
+                 concat_mode=True,
+                 cond_stage_forward=None,
+                 conditioning_key=None,
+                 scale_factor=1.0,
+                 scale_by_std=False,
+                 use_mask=False,
+                 *args, **kwargs):
+        self.num_timesteps_cond = default(num_timesteps_cond, 1)
+        self.scale_by_std = scale_by_std
+        assert self.num_timesteps_cond <= kwargs['timesteps']
+        # for backwards compatibility after implementation of DiffusionWrapper
+        if conditioning_key is None:
+            conditioning_key = 'concat' if concat_mode else 'crossattn'
+        if cond_stage_config == '__is_unconditional__':
+            conditioning_key = None
+        ckpt_path = kwargs.pop("ckpt_path", None)
+        ignore_keys = kwargs.pop("ignore_keys", [])
+        super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
+        self.concat_mode = concat_mode
+        self.cond_stage_trainable = cond_stage_trainable
+        self.cond_stage_key = cond_stage_key
+        try:
+            self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
+        except:
+            self.num_downs = 0
+        if not scale_by_std:
+            self.scale_factor = scale_factor
+        else:
+            self.register_buffer('scale_factor', torch.tensor(scale_factor))
+        self.instantiate_first_stage(first_stage_config)
+        self.instantiate_cond_stage(cond_stage_config)
+        self.cond_stage_forward = cond_stage_forward
+        self.clip_denoised = False
+        self.bbox_tokenizer = None
+        self.use_mask = use_mask
+
+        self.restarted_from_ckpt = False
+        if ckpt_path is not None:
+            self.init_from_ckpt(ckpt_path, ignore_keys)
+            self.restarted_from_ckpt = True
+
+    def make_cond_schedule(self, ):
+        self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
+        ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
+        self.cond_ids[:self.num_timesteps_cond] = ids
+
+    @rank_zero_only
+    @torch.no_grad()
+    def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
+        # only for very first batch
+        if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
+            assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
+            # set rescale weight to 1./std of encodings
+            self.print_fn("### USING STD-RESCALING ###")
+            x = super().get_input(batch, self.first_stage_key)
+            x = x.to(self.device)
+            encoder_posterior = self.encode_first_stage(x)
+            z = self.get_first_stage_encoding(encoder_posterior).detach()
+            del self.scale_factor
+            self.register_buffer('scale_factor', 1. / z.flatten().std())
+            self.print_fn(f"setting self.scale_factor to {self.scale_factor}")
+            self.print_fn("### USING STD-RESCALING ###")
+
+    def register_schedule(self,
+                          given_betas=None, beta_schedule="linear", timesteps=1000,
+                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+        super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
+
+        self.shorten_cond_schedule = self.num_timesteps_cond > 1
+        if self.shorten_cond_schedule:
+            self.make_cond_schedule()
+
+    def instantiate_first_stage(self, config):
+        model = instantiate_from_config(config)
+        self.first_stage_model = model.eval()
+        self.first_stage_model.train = disabled_train
+        for param in self.first_stage_model.parameters():
+            param.requires_grad = False
+
+    def instantiate_cond_stage(self, config):
+        if not self.cond_stage_trainable:
+            if config == "__is_first_stage__":
+                self.print_fn("Using first stage also as cond stage.")
+                self.cond_stage_model = self.first_stage_model
+            elif config == "__is_unconditional__":
+                self.print_fn(f"Training {self.__class__.__name__} as an unconditional model.")
+                self.cond_stage_model = None
+                # self.be_unconditional = True
+            else:
+                model = instantiate_from_config(config)
+                self.cond_stage_model = model.eval()
+                self.cond_stage_model.train = disabled_train
+                for param in self.cond_stage_model.parameters():
+                    param.requires_grad = False
+        else:
+            assert config != '__is_first_stage__'
+            assert config != '__is_unconditional__'
+            model = instantiate_from_config(config)
+            self.cond_stage_model = model
+
+    def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
+        denoise_row = []
+        for zd in tqdm(samples, desc=desc):
+            denoise_row.append(self.decode_first_stage(zd.to(self.device),
+                                                       force_not_quantize=force_no_decoder_quantization))
+        n_imgs_per_row = len(denoise_row)
+        denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
+        denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
+        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
+        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
+        return denoise_grid
+
+    def get_first_stage_encoding(self, encoder_posterior):
+        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
+            z = encoder_posterior.sample()
+        elif isinstance(encoder_posterior, torch.Tensor):
+            z = encoder_posterior
+        else:
+            raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
+        return self.scale_factor * z
+
+    def get_learned_conditioning(self, c):
+        if self.cond_stage_forward is None:
+            if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
+                c = self.cond_stage_model.encode(c)
+                if isinstance(c, DiagonalGaussianDistribution):
+                    c = c.mode()
+            else:
+                c = self.cond_stage_model(c)
+        else:
+            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
+            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
+        return c
+
+    def meshgrid(self, h, w):
+        y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
+        x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
+
+        arr = torch.cat([y, x], dim=-1)
+        return arr
+
+    def delta_border(self, h, w):
+        """
+        :param h: height
+        :param w: width
+        :return: normalized distance to image border,
+         wtith min distance = 0 at border and max dist = 0.5 at image center
+        """
+        lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
+        arr = self.meshgrid(h, w) / lower_right_corner
+        dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
+        dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
+        edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
+        return edge_dist
+
+    def get_weighting(self, h, w, Ly, Lx, device):
+        weighting = self.delta_border(h, w)
+        weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
+                               self.split_input_params["clip_max_weight"], )
+        weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
+
+        if self.split_input_params["tie_braker"]:
+            L_weighting = self.delta_border(Ly, Lx)
+            L_weighting = torch.clip(L_weighting,
+                                     self.split_input_params["clip_min_tie_weight"],
+                                     self.split_input_params["clip_max_tie_weight"])
+
+            L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
+            weighting = weighting * L_weighting
+        return weighting
+
+    def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
+        """
+        :param x: img of size (bs, c, h, w)
+        :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
+        """
+        bs, nc, h, w = x.shape
+
+        # number of crops in image
+        Ly = (h - kernel_size[0]) // stride[0] + 1
+        Lx = (w - kernel_size[1]) // stride[1] + 1
+
+        if uf == 1 and df == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
+
+            weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
+
+        elif uf > 1 and df == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
+                                dilation=1, padding=0,
+                                stride=(stride[0] * uf, stride[1] * uf))
+            fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
+
+            weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
+
+        elif df > 1 and uf == 1:
+            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
+            unfold = torch.nn.Unfold(**fold_params)
+
+            fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
+                                dilation=1, padding=0,
+                                stride=(stride[0] // df, stride[1] // df))
+            fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
+
+            weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
+            normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
+            weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
+
+        else:
+            raise NotImplementedError
+
+        return fold, unfold, normalization, weighting
+
+    @torch.no_grad()
+    def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
+                  cond_key=None, return_original_cond=False, bs=None):
+        # ground truth
+        x = super().get_input(batch, k)
+        if bs is not None:
+            x = x[:bs]
+        x = x.to(self.device)
+
+        # encoding
+        encoder_posterior = self.encode_first_stage(x)
+        z = self.get_first_stage_encoding(encoder_posterior).detach()
+        if self.model.conditioning_key is not None:
+            if cond_key is None:
+                cond_key = self.cond_stage_key
+            if cond_key != self.first_stage_key:
+                if cond_key in ['caption', 'bbox', 'center', 'camera']:
+                    xc = batch[cond_key]
+                elif cond_key in ['class_label']:
+                    xc = batch
+                else:
+                    xc = super().get_input(batch, cond_key).to(self.device)
+            else:
+                xc = x
+            # if bs is not None:
+            #     xc = xc[:bs]
+            if not self.cond_stage_trainable or force_c_encode:
+                if isinstance(xc, (dict, list)):
+                    c = self.get_learned_conditioning(xc)
+                else:
+                    c = self.get_learned_conditioning(xc.to(self.device))
+            else:
+                c = xc
+            if bs is not None:
+                c = c[:bs]
+
+            if self.use_positional_encodings:
+                pos_x, pos_y = self.compute_latent_shifts(batch)
+                ckey = __conditioning_keys__[self.model.conditioning_key]
+                c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
+
+        else:
+            c = None
+            xc = None
+            if self.use_positional_encodings:
+                pos_x, pos_y = self.compute_latent_shifts(batch)
+                c = {'pos_x': pos_x, 'pos_y': pos_y}
+        out = [z, c]
+        if return_first_stage_outputs:
+            xrec = self.decode_first_stage(z)
+            out.extend([x, xrec])
+        if return_original_cond:
+            out.append(xc)
+        return out
+
+    @torch.no_grad()
+    def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+        if predict_cids:
+            if z.dim() == 4:
+                z = torch.argmax(z.exp(), dim=1).long()
+            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+            z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+        z = 1. / self.scale_factor * z
+
+        if hasattr(self, "split_input_params"):
+            if self.split_input_params["patch_distributed_vq"]:
+                ks = self.split_input_params["ks"]  # eg. (128, 128)
+                stride = self.split_input_params["stride"]  # eg. (64, 64)
+                uf = self.split_input_params["vqf"]
+                bs, nc, h, w = z.shape
+                if ks[0] > h or ks[1] > w:
+                    ks = (min(ks[0], h), min(ks[1], w))
+                    self.print_fn("reducing Kernel")
+
+                if stride[0] > h or stride[1] > w:
+                    stride = (min(stride[0], h), min(stride[1], w))
+                    self.print_fn("reducing stride")
+
+                fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+                z = unfold(z)  # (bn, nc * prod(**ks), L)
+                # 1. Reshape to img shape
+                z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
+
+                # 2. apply model loop over last dim
+                if isinstance(self.first_stage_model, VQModelInterface):
+                    output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+                                                                 force_not_quantize=predict_cids or force_not_quantize)
+                                   for i in range(z.shape[-1])]
+                else:
+
+                    output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+                                   for i in range(z.shape[-1])]
+
+                o = torch.stack(output_list, axis=-1)  # # (bn, nc, ks[0], ks[1], L)
+                o = o * weighting
+                # Reverse 1. reshape to img shape
+                o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
+                # stitch crops together
+                decoded = fold(o)
+                decoded = decoded / normalization  # norm is shape (1, 1, h, w)
+                return decoded
+            else:
+                if isinstance(self.first_stage_model, VQModelInterface):
+                    return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+                else:
+                    return self.first_stage_model.decode(z)
+
+        else:
+            if isinstance(self.first_stage_model, VQModelInterface):
+                return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+            else:
+                return self.first_stage_model.decode(z)
+
+    # same as above but without decorator
+    def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
+        if predict_cids:
+            if z.dim() == 4:
+                z = torch.argmax(z.exp(), dim=1).long()
+            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
+            z = rearrange(z, 'b h w c -> b c h w').contiguous()
+
+        z = 1. / self.scale_factor * z
+
+        if hasattr(self, "split_input_params"):
+            if self.split_input_params["patch_distributed_vq"]:
+                ks = self.split_input_params["ks"]  # eg. (128, 128)
+                stride = self.split_input_params["stride"]  # eg. (64, 64)
+                uf = self.split_input_params["vqf"]
+                bs, nc, h, w = z.shape
+                if ks[0] > h or ks[1] > w:
+                    ks = (min(ks[0], h), min(ks[1], w))
+                    self.print_fn("reducing Kernel")
+
+                if stride[0] > h or stride[1] > w:
+                    stride = (min(stride[0], h), min(stride[1], w))
+                    self.print_fn("reducing stride")
+
+                fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf)
+
+                z = unfold(z)  # (bn, nc * prod(**ks), L)
+                # 1. Reshape to img shape
+                z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
+
+                # 2. apply model loop over last dim
+                if isinstance(self.first_stage_model, VQModelInterface):
+                    output_list = [self.first_stage_model.decode(z[:, :, :, :, i],
+                                                                 force_not_quantize=predict_cids or force_not_quantize)
+                                   for i in range(z.shape[-1])]
+                else:
+                    output_list = [self.first_stage_model.decode(z[:, :, :, :, i])
+                                   for i in range(z.shape[-1])]
+
+                o = torch.stack(output_list, axis=-1)  # # (bn, nc, ks[0], ks[1], L)
+                o = o * weighting
+                # Reverse 1. reshape to img shape
+                o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
+                # stitch crops together
+                decoded = fold(o)
+                decoded = decoded / normalization  # norm is shape (1, 1, h, w)
+                return decoded
+            else:
+                if isinstance(self.first_stage_model, VQModelInterface):
+                    return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+                else:
+                    return self.first_stage_model.decode(z)
+
+        else:
+            if isinstance(self.first_stage_model, VQModelInterface):
+                return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize)
+            else:
+                return self.first_stage_model.decode(z)
+
+    @torch.no_grad()
+    def encode_first_stage(self, x):
+        if hasattr(self, "split_input_params"):
+            if self.split_input_params["patch_distributed_vq"]:
+                ks = self.split_input_params["ks"]  # eg. (128, 128)
+                stride = self.split_input_params["stride"]  # eg. (64, 64)
+                df = self.split_input_params["vqf"]
+                self.split_input_params['original_image_size'] = x.shape[-2:]
+                bs, nc, h, w = x.shape
+                if ks[0] > h or ks[1] > w:
+                    ks = (min(ks[0], h), min(ks[1], w))
+                    self.print_fn("reducing kernel")
+
+                if stride[0] > h or stride[1] > w:
+                    stride = (min(stride[0], h), min(stride[1], w))
+                    self.print_fn("reducing stride")
+
+                fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df)
+                z = unfold(x)  # (bn, nc * prod(**ks), L)
+                # Reshape to img shape
+                z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
+
+                output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) for i in range(z.shape[-1])]
+
+                o = torch.stack(output_list, axis=-1)
+                o = o * weighting
+
+                # Reverse reshape to img shape
+                o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
+                # stitch crops together
+                decoded = fold(o)
+                decoded = decoded / normalization
+                return decoded
+            else:
+                return self.first_stage_model.encode(x)
+        else:
+            return self.first_stage_model.encode(x)
+
+    def shared_step(self, batch, **kwargs):
+        x, c = self.get_input(batch, self.first_stage_key)
+        loss = self(x, c)
+        return loss
+
+    def forward(self, x, c, *args, **kwargs):
+        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
+        if self.model.conditioning_key is not None:
+            assert c is not None
+            if self.cond_stage_trainable:
+                c = self.get_learned_conditioning(c)
+            if self.shorten_cond_schedule:  # TODO: drop this option
+                tc = self.cond_ids[t].to(self.device)
+                c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
+        return self.p_losses(x, c, t, *args, **kwargs)
+
+    def _rescale_annotations(self, bboxes, crop_coordinates):  # TODO: move to dataset
+        def rescale_bbox(bbox):
+            x0 = clamp((bbox[0] - crop_coordinates[0]) / crop_coordinates[2])
+            y0 = clamp((bbox[1] - crop_coordinates[1]) / crop_coordinates[3])
+            w = min(bbox[2] / crop_coordinates[2], 1 - x0)
+            h = min(bbox[3] / crop_coordinates[3], 1 - y0)
+            return x0, y0, w, h
+
+        return [rescale_bbox(b) for b in bboxes]
+
+    def apply_model(self, x_noisy, t, cond, return_ids=False):
+
+        if isinstance(cond, dict):
+            # hybrid case, cond is exptected to be a dict
+            pass
+        else:
+            if not isinstance(cond, list):
+                cond = [cond]
+            key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
+            cond = {key: cond}
+
+        if hasattr(self, "split_input_params"):
+            assert len(cond) == 1
+            assert not return_ids
+            ks = self.split_input_params["ks"]  # eg. (128, 128)
+            stride = self.split_input_params["stride"]  # eg. (64, 64)
+
+            h, w = x_noisy.shape[-2:]
+
+            fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride)
+
+            z = unfold(x_noisy)  # (bn, nc * prod(**ks), L)
+            # Reshape to img shape
+            z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
+            z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])]
+
+            if self.cond_stage_key in ["image", "LR_image", "segmentation", 'bbox_img'] and self.model.conditioning_key:
+                c_key = next(iter(cond.keys()))  # get key
+                c = next(iter(cond.values()))  # get value
+                assert (len(c) == 1)
+                c = c[0]  # get element
+
+                c = unfold(c)
+                c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1]))  # (bn, nc, ks[0], ks[1], L )
+
+                cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])]
+
+            elif self.cond_stage_key in ['bbox', 'center']:
+                assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size'
+
+                # assuming padding of unfold is always 0 and its dilation is always 1
+                n_patches_per_row = int((w - ks[0]) / stride[0] + 1)
+                full_img_h, full_img_w = self.split_input_params['original_image_size']
+                # as we are operating on latents, we need the factor from the original image size to the
+                # spatial latent size to properly rescale the crops for regenerating the bbox annotations
+                num_downs = self.first_stage_model.encoder.num_resolutions - 1
+                rescale_latent = 2 ** num_downs
+
+                # get top left postions of patches as conforming for the bbbox tokenizer, therefore we
+                # need to rescale the tl patch coordinates to be in between (0,1)
+                tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w,
+                                         rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h)
+                                        for patch_nr in range(z.shape[-1])]
+
+                # patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w)
+                patch_limits = [(x_tl, y_tl,
+                                 rescale_latent * ks[0] / full_img_w,
+                                 rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates]
+                # patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates]
+
+                # tokenize crop coordinates for the bounding boxes of the respective patches
+                patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer.crop_encoder(bbox))[None].to(self.device)
+                                      for bbox in patch_limits]  # list of length l with tensors of shape (1, 2)
+                self.print_fn(patch_limits_tknzd[0].shape)
+                # cut tknzd crop position from conditioning
+                assert isinstance(cond, dict), 'cond must be dict to be fed into model'
+                cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device)
+                self.print_fn(cut_cond.shape)
+
+                adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd])
+                adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n')
+                self.print_fn(adapted_cond.shape)
+                adapted_cond = self.get_learned_conditioning(adapted_cond)
+                self.print_fn(adapted_cond.shape)
+                adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1])
+                self.print_fn(adapted_cond.shape)
+
+                cond_list = [{'c_crossattn': [e]} for e in adapted_cond]
+
+            else:
+                cond_list = [cond for i in range(z.shape[-1])]  # todo make this more efficient
+
+            # apply model by loop over crops
+            output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])]
+            assert not isinstance(output_list[0],
+                                  tuple)  # todo cant deal with multiple model outputs check this never happens
+
+            o = torch.stack(output_list, axis=-1)
+            o = o * weighting
+            # Reverse reshape to img shape
+            o = o.view((o.shape[0], -1, o.shape[-1]))  # (bn, nc * ks[0] * ks[1], L)
+            # stitch crops together
+            x_recon = fold(o) / normalization
+
+        else:
+            x_recon = self.model(x_noisy, t, **cond)
+
+        if isinstance(x_recon, tuple) and not return_ids:
+            return x_recon[0]
+        else:
+            return x_recon
+
+    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
+        return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
+               extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
+
+    def _prior_bpd(self, x_start):
+        """
+        Get the prior KL term for the variational lower-bound, measured in
+        bits-per-dim.
+        This term can't be optimized, as it only depends on the encoder.
+        :param x_start: the [N x C x ...] tensor of inputs.
+        :return: a batch of [N] KL values (in bits), one per batch element.
+        """
+        batch_size = x_start.shape[0]
+        t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
+        qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
+        kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
+        return mean_flat(kl_prior) / np.log(2.0)
+
+    def p_losses(self, x_start, cond, t, noise=None):
+        noise = default(noise, lambda: torch.randn_like(x_start))
+        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
+        model_output = self.apply_model(x_noisy, t, cond)
+
+        loss_dict = {}
+        prefix = 'train' if self.training else 'val'
+
+        if self.parameterization == "x0":
+            target = x_start
+        elif self.parameterization == "eps":
+            target = noise
+        else:
+            raise NotImplementedError()
+
+        # simple loss
+        loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
+        loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
+
+        logvar_t = self.logvar[t].to(self.device)
+        loss = loss_simple / torch.exp(logvar_t) + logvar_t
+        # loss = loss_simple / torch.exp(self.logvar) + self.logvar
+        if self.learn_logvar:
+            loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
+            loss_dict.update({'logvar': self.logvar.data.mean()})
+
+        loss = self.l_simple_weight * loss.mean()
+
+        # vlb loss
+        loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
+        loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
+        loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
+
+        # total loss
+        loss += (self.original_elbo_weight * loss_vlb)
+        loss_dict.update({f'{prefix}/loss': loss})
+
+        return loss, loss_dict
+
+    def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
+                        return_x0=False, score_corrector=None, corrector_kwargs=None):
+        t_in = t
+        model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
+
+        if score_corrector is not None:
+            assert self.parameterization == "eps"
+            model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
+
+        if return_codebook_ids:
+            model_out, logits = model_out
+
+        if self.parameterization == "eps":
+            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
+        elif self.parameterization == "x0":
+            x_recon = model_out
+        else:
+            raise NotImplementedError()
+
+        if clip_denoised:
+            x_recon.clamp_(-1., 1.)
+        if quantize_denoised:
+            x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
+        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
+        if return_codebook_ids:
+            return model_mean, posterior_variance, posterior_log_variance, logits
+        elif return_x0:
+            return model_mean, posterior_variance, posterior_log_variance, x_recon
+        else:
+            return model_mean, posterior_variance, posterior_log_variance
+
+    @torch.no_grad()
+    def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
+                 return_codebook_ids=False, quantize_denoised=False, return_x0=False,
+                 temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
+        b, *_, device = *x.shape, x.device
+        outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
+                                       return_codebook_ids=return_codebook_ids,
+                                       quantize_denoised=quantize_denoised,
+                                       return_x0=return_x0,
+                                       score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+        if return_codebook_ids:
+            raise DeprecationWarning("Support dropped.")
+            model_mean, _, model_log_variance, logits = outputs
+        elif return_x0:
+            model_mean, _, model_log_variance, x0 = outputs
+        else:
+            model_mean, _, model_log_variance = outputs
+
+        noise = noise_like(x.shape, device, repeat_noise) * temperature
+        if noise_dropout > 0.:
+            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+        # no noise when t == 0
+        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
+
+        if return_codebook_ids:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
+        if return_x0:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
+        else:
+            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
+
+    @torch.no_grad()
+    def progressive_denoising(self, cond, shape, verbose=False, callback=None, quantize_denoised=False,
+                              img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
+                              score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
+                              log_every_t=None):
+        if not log_every_t:
+            log_every_t = self.log_every_t
+        timesteps = self.num_timesteps
+        if batch_size is not None:
+            b = batch_size if batch_size is not None else shape[0]
+            shape = [batch_size] + list(shape)
+        else:
+            b = batch_size = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=self.device)
+        else:
+            img = x_T
+        intermediates = []
+        if cond is not None:
+            if isinstance(cond, dict):
+                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+            else:
+                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+
+        if start_T is not None:
+            timesteps = min(timesteps, start_T)
+        iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
+                        total=timesteps) if verbose else reversed(
+            range(0, timesteps))
+        if type(temperature) == float:
+            temperature = [temperature] * timesteps
+
+        for i in iterator:
+            ts = torch.full((b,), i, device=self.device, dtype=torch.long)
+            if self.shorten_cond_schedule:
+                assert self.model.conditioning_key != 'hybrid'
+                tc = self.cond_ids[ts].to(cond.device)
+                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+            img, x0_partial = self.p_sample(img, cond, ts,
+                                            clip_denoised=self.clip_denoised,
+                                            quantize_denoised=quantize_denoised, return_x0=True,
+                                            temperature=temperature[i], noise_dropout=noise_dropout,
+                                            score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.q_sample(x0, ts)
+                img = img_orig * mask + (1. - mask) * img
+
+            if i % log_every_t == 0 or i == timesteps - 1:
+                intermediates.append(x0_partial)
+            if callback: callback(i)
+            if img_callback: img_callback(img, i)
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_loop(self, cond, shape, return_intermediates=False,
+                      x_T=None, verbose=False, callback=None, timesteps=None, quantize_denoised=False,
+                      mask=None, x0=None, img_callback=None, start_T=None,
+                      log_every_t=None):
+
+        if not log_every_t:
+            log_every_t = self.log_every_t
+        device = self.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        intermediates = [img]
+        if timesteps is None:
+            timesteps = self.num_timesteps
+
+        if start_T is not None:
+            timesteps = min(timesteps, start_T)
+        iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
+            range(0, timesteps))
+
+        if mask is not None:
+            assert x0 is not None
+            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
+
+        for i in iterator:
+            ts = torch.full((b,), i, device=device, dtype=torch.long)
+            if self.shorten_cond_schedule:
+                assert self.model.conditioning_key != 'hybrid'
+                tc = self.cond_ids[ts].to(cond.device)
+                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
+
+            img = self.p_sample(img, cond, ts,
+                                clip_denoised=self.clip_denoised,
+                                quantize_denoised=quantize_denoised)
+            if mask is not None:
+                img_orig = self.q_sample(x0, ts)
+                img = img_orig * mask + (1. - mask) * img
+
+            if i % log_every_t == 0 or i == timesteps - 1:
+                intermediates.append(img)
+            if callback: callback(i)
+            if img_callback: img_callback(img, i)
+
+        if return_intermediates:
+            return img, intermediates
+        return img
+
+    @torch.no_grad()
+    def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
+               verbose=False, timesteps=None, quantize_denoised=False,
+               mask=None, x0=None, shape=None, **kwargs):
+        if shape is None:
+            shape = (batch_size, self.channels, *self.image_size)
+        if cond is not None:
+            if isinstance(cond, dict):
+                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
+                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
+            else:
+                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
+        return self.p_sample_loop(cond,
+                                  shape,
+                                  return_intermediates=return_intermediates, x_T=x_T,
+                                  verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
+                                  mask=mask, x0=x0)
+
+    @torch.no_grad()
+    def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
+        if ddim:
+            ddim_sampler = DDIMSampler(self)
+            shape = (self.channels, *self.image_size)
+            samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
+                                                         shape, cond, verbose=self.verbose, **kwargs)
+
+        else:
+            samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
+                                                 return_intermediates=True, **kwargs)
+
+        return samples, intermediates
+
+    @torch.no_grad()
+    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
+                   quantize_denoised=False, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False,
+                   plot_diffusion_rows=False, dset=None, **kwargs):
+
+        use_ddim = ddim_steps is not None
+
+        log = dict()
+        z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
+                                           return_first_stage_outputs=True,
+                                           force_c_encode=True,
+                                           return_original_cond=True,
+                                           bs=N)
+
+        N = min(x.shape[0], N)
+        n_row = min(x.shape[0], n_row)
+        log["inputs"] = x
+        log["reconstruction"] = xrec
+        if self.model.conditioning_key is not None:
+            if hasattr(self.cond_stage_model, "decode"):
+                xc = self.cond_stage_model.decode(c)
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ["caption"]:
+                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"])
+                log["conditioning"] = xc
+            elif self.cond_stage_key in ['class_label']:
+                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"])
+                log['conditioning'] = xc
+            elif self.cond_stage_key in ['camera']:
+                if isinstance(batch["camera"], list):
+                    xc = torch.cat(batch["camera"], -1)
+                else:
+                    xc = batch["camera"].permute(0, 2, 3, 1, 4)
+                    xc = xc.reshape(*xc.shape[:3], -1) * 2. - 1.
+                log['conditioning'] = xc
+            elif isimage(xc):
+                log["conditioning"] = xc
+            if ismap(xc):
+                if dset is None:
+                    key = 'train' if self.training else 'validation'
+                    dset = self.trainer.datamodule.datasets[key].data
+                label2rgb = torch.from_numpy(dset.label2rgb).to(self.device) / 127.5 - 1.
+                # log["original_conditioning"] = self.to_rgb(xc)
+                log["original_conditioning"] = label2rgb[xc.argmax(1)].permute(0, 3, 1, 2)
+
+        if plot_diffusion_rows:
+            # get diffusion row
+            diffusion_row = list()
+            z_start = z[:n_row]
+            for t in range(self.num_timesteps):
+                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
+                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
+                    t = t.to(self.device).long()
+                    noise = torch.randn_like(z_start)
+                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
+                    diffusion_row.append(self.decode_first_stage(z_noisy))
+
+            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
+            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
+            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
+            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
+            log["diffusion_row"] = diffusion_grid
+
+        if sample:
+            # get denoise row
+            with self.ema_scope("Plotting"):
+                samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                         ddim_steps=ddim_steps, eta=ddim_eta)
+            x_samples = self.decode_first_stage(samples)
+            log["samples"] = x_samples
+            if plot_denoise_rows:
+                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
+                log["denoise_row"] = denoise_grid
+
+            if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
+                    self.first_stage_model, IdentityFirstStage):
+                # also display when quantizing x0 while sampling
+                with self.ema_scope("Plotting Quantized Denoised"):
+                    samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
+                                                             ddim_steps=ddim_steps, eta=ddim_eta,
+                                                             quantize_denoised=True)
+                x_samples = self.decode_first_stage(samples.to(self.device))
+                log["samples_x0_quantized"] = x_samples
+
+            if inpaint:
+                # make a simple center square
+                b, h, w = z.shape[0], z.shape[2], z.shape[3]
+                mask = torch.ones(N, h, w).to(self.device)
+                # zeros will be filled in
+                mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
+                mask = mask[:, None, ...]
+                with self.ema_scope("Plotting Inpaint"):
+                    samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
+                                                 ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+                x_samples = self.decode_first_stage(samples.to(self.device))
+                log["samples_inpainting"] = x_samples
+                log["mask"] = mask
+
+                # outpaint
+                with self.ema_scope("Plotting Outpaint"):
+                    samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
+                                                 ddim_steps=ddim_steps, x0=z[:N], mask=mask)
+                x_samples = self.decode_first_stage(samples.to(self.device))
+                log["samples_outpainting"] = x_samples
+
+        if plot_progressive_rows:
+            with self.ema_scope("Plotting Progressives"):
+                img, progressives = self.progressive_denoising(c, shape=(self.channels, *self.image_size), batch_size=N)
+            prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
+            log["progressive_row"] = prog_row
+
+        if return_keys:
+            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
+                return log
+            else:
+                return {key: log[key] for key in return_keys}
+        return log
+
+    def configure_optimizers(self):
+        lr = self.learning_rate
+        params = list(self.model.parameters())
+        if self.cond_stage_trainable:
+            self.print_fn(f"{self.__class__.__name__}: Also optimizing conditioner params!")
+            params = params + list(self.cond_stage_model.parameters())
+        if self.learn_logvar:
+            self.print_fn('Diffusion model optimizing logvar')
+            params.append(self.logvar)
+        opt = torch.optim.AdamW(params, lr=lr)
+        if self.use_scheduler:
+            assert 'target' in self.scheduler_config
+            scheduler = instantiate_from_config(self.scheduler_config)
+
+            self.print_fn("Setting up LambdaLR scheduler...")
+            scheduler = [
+                {
+                    'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
+                    'interval': 'step',
+                    'frequency': 1
+                }]
+            return [opt], scheduler
+        return opt
+
+    @torch.no_grad()
+    def to_rgb(self, x):
+        x = x.float()
+        if not hasattr(self, "colorize"):
+            self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
+        x = nn.functional.conv2d(x, weight=self.colorize)
+        x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
+        return x
+
+
+class DiffusionWrapper(pl.LightningModule):
+    def __init__(self, diff_model_config, conditioning_key):
+        super().__init__()
+        self.diffusion_model = instantiate_from_config(diff_model_config)
+        self.conditioning_key = conditioning_key
+        assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm']
+
+    def forward(self, x, t, c_concat: list = None, c_crossattn: list = None):
+        if self.conditioning_key is None:
+            out = self.diffusion_model(x, t)
+        elif self.conditioning_key == 'concat':
+            xc = torch.cat([x] + c_concat, dim=1)
+            out = self.diffusion_model(xc, t)
+        elif self.conditioning_key == 'crossattn':
+            cc = torch.cat(c_crossattn, 1)
+            out = self.diffusion_model(x, t, context=cc)
+        elif self.conditioning_key == 'hybrid':
+            xc = torch.cat([x] + c_concat, dim=1)
+            cc = torch.cat(c_crossattn, 1)
+            out = self.diffusion_model(xc, t, context=cc)
+        elif self.conditioning_key == 'adm':
+            cc = c_crossattn[0]
+            out = self.diffusion_model(x, t, y=cc)
+        else:
+            raise NotImplementedError()
+
+        return out
+
+
+class Layout2ImgDiffusion(LatentDiffusion):
+    def __init__(self, cond_stage_key, *args, **kwargs):
+        assert cond_stage_key in ['bbox', 'center'], 'Layout2ImgDiffusion only for cond_stage_key="bbox" or "center"'
+        super().__init__(cond_stage_key=cond_stage_key, *args, **kwargs)
+
+    def log_images(self, batch, N=8, dset=None, *args, **kwargs):
+        logs = super().log_images(batch=batch, N=N, *args, **kwargs)
+
+        key = 'train' if self.training else 'validation'
+        if dset is None:
+            dset = self.trainer.datamodule.datasets[key].data
+        mapper = dset.conditional_builders[self.cond_stage_key]
+        H, W = batch['image'].shape[2:]
+
+        bbox_imgs = []
+        map_fn = lambda catno: dset.get_textual_label_for_category_id(catno)
+        for tknzd_bbox in batch[self.cond_stage_key][:N]:
+            bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (W, H))
+            bbox_imgs.append(bboximg)
+
+        cond_img = torch.stack(bbox_imgs, dim=0)
+        logs['bbox_image'] = cond_img
+        return logs
diff --git a/lidm/models/diffusion/plms.py b/lidm/models/diffusion/plms.py
new file mode 100644
index 0000000000000000000000000000000000000000..b68ab413ca361d8bc8ba815c12ad2dbb2144d728
--- /dev/null
+++ b/lidm/models/diffusion/plms.py
@@ -0,0 +1,236 @@
+"""SAMPLING ONLY."""
+
+import torch
+import numpy as np
+from tqdm import tqdm
+from functools import partial
+
+from ...modules.diffusion.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
+
+
+class PLMSSampler(object):
+    def __init__(self, model, schedule="linear", **kwargs):
+        super().__init__()
+        self.model = model
+        self.ddpm_num_timesteps = model.num_timesteps
+        self.schedule = schedule
+
+    def register_buffer(self, name, attr):
+        if type(attr) == torch.Tensor:
+            if attr.device != torch.device("cuda"):
+                attr = attr.to(torch.device("cuda"))
+        setattr(self, name, attr)
+
+    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=False):
+        if ddim_eta != 0:
+            raise ValueError('ddim_eta must be 0 for PLMS')
+        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
+                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
+        alphas_cumprod = self.model.alphas_cumprod
+        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
+        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
+
+        self.register_buffer('betas', to_torch(self.model.betas))
+        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
+        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
+
+        # calculations for diffusion q(x_t | x_{t-1}) and others
+        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
+        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
+        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
+
+        # ddim sampling parameters
+        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
+                                                                                   ddim_timesteps=self.ddim_timesteps,
+                                                                                   eta=ddim_eta,verbose=verbose)
+        self.register_buffer('ddim_sigmas', ddim_sigmas)
+        self.register_buffer('ddim_alphas', ddim_alphas)
+        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
+        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
+        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
+            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
+                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
+        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
+
+    @torch.no_grad()
+    def sample(self,
+               S,
+               batch_size,
+               shape,
+               conditioning=None,
+               callback=None,
+               normals_sequence=None,
+               img_callback=None,
+               quantize_x0=False,
+               eta=0.,
+               mask=None,
+               x0=None,
+               temperature=1.,
+               noise_dropout=0.,
+               score_corrector=None,
+               corrector_kwargs=None,
+               verbose=False,
+               x_T=None,
+               log_every_t=100,
+               unconditional_guidance_scale=1.,
+               unconditional_conditioning=None,
+               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
+               **kwargs
+               ):
+        if conditioning is not None:
+            if isinstance(conditioning, dict):
+                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
+                if cbs != batch_size:
+                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
+            else:
+                if conditioning.shape[0] != batch_size:
+                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
+
+        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
+        # sampling
+        C, H, W = shape
+        size = (batch_size, C, H, W)
+        print(f'Data shape for PLMS sampling is {size}')
+
+        samples, intermediates = self.plms_sampling(conditioning, size,
+                                                    callback=callback,
+                                                    img_callback=img_callback,
+                                                    quantize_denoised=quantize_x0,
+                                                    mask=mask, x0=x0,
+                                                    ddim_use_original_steps=False,
+                                                    noise_dropout=noise_dropout,
+                                                    temperature=temperature,
+                                                    score_corrector=score_corrector,
+                                                    corrector_kwargs=corrector_kwargs,
+                                                    x_T=x_T,
+                                                    log_every_t=log_every_t,
+                                                    unconditional_guidance_scale=unconditional_guidance_scale,
+                                                    unconditional_conditioning=unconditional_conditioning,
+                                                    )
+        return samples, intermediates
+
+    @torch.no_grad()
+    def plms_sampling(self, cond, shape,
+                      x_T=None, ddim_use_original_steps=False,
+                      callback=None, timesteps=None, quantize_denoised=False,
+                      mask=None, x0=None, img_callback=None, log_every_t=100,
+                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+                      unconditional_guidance_scale=1., unconditional_conditioning=None,):
+        device = self.model.betas.device
+        b = shape[0]
+        if x_T is None:
+            img = torch.randn(shape, device=device)
+        else:
+            img = x_T
+
+        if timesteps is None:
+            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
+        elif timesteps is not None and not ddim_use_original_steps:
+            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
+            timesteps = self.ddim_timesteps[:subset_end]
+
+        intermediates = {'x_inter': [img], 'pred_x0': [img]}
+        time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
+        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
+        print(f"Running PLMS Sampling with {total_steps} timesteps")
+
+        iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
+        old_eps = []
+
+        for i, step in enumerate(iterator):
+            index = total_steps - i - 1
+            ts = torch.full((b,), step, device=device, dtype=torch.long)
+            ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
+
+            if mask is not None:
+                assert x0 is not None
+                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
+                img = img_orig * mask + (1. - mask) * img
+
+            outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
+                                      quantize_denoised=quantize_denoised, temperature=temperature,
+                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
+                                      corrector_kwargs=corrector_kwargs,
+                                      unconditional_guidance_scale=unconditional_guidance_scale,
+                                      unconditional_conditioning=unconditional_conditioning,
+                                      old_eps=old_eps, t_next=ts_next)
+            img, pred_x0, e_t = outs
+            old_eps.append(e_t)
+            if len(old_eps) >= 4:
+                old_eps.pop(0)
+            if callback: callback(i)
+            if img_callback: img_callback(pred_x0, i)
+
+            if index % log_every_t == 0 or index == total_steps - 1:
+                intermediates['x_inter'].append(img)
+                intermediates['pred_x0'].append(pred_x0)
+
+        return img, intermediates
+
+    @torch.no_grad()
+    def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
+                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
+                      unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
+        b, *_, device = *x.shape, x.device
+
+        def get_model_output(x, t):
+            if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
+                e_t = self.model.apply_model(x, t, c)
+            else:
+                x_in = torch.cat([x] * 2)
+                t_in = torch.cat([t] * 2)
+                c_in = torch.cat([unconditional_conditioning, c])
+                e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
+                e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
+
+            if score_corrector is not None:
+                assert self.model.parameterization == "eps"
+                e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
+
+            return e_t
+
+        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
+        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
+        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
+        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
+
+        def get_x_prev_and_pred_x0(e_t, index):
+            # select parameters corresponding to the currently considered timestep
+            a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
+            a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
+            sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
+            sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
+
+            # current prediction for x_0
+            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
+            if quantize_denoised:
+                pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
+            # direction pointing to x_t
+            dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
+            noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
+            if noise_dropout > 0.:
+                noise = torch.nn.functional.dropout(noise, p=noise_dropout)
+            x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
+            return x_prev, pred_x0
+
+        e_t = get_model_output(x, t)
+        if len(old_eps) == 0:
+            # Pseudo Improved Euler (2nd order)
+            x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
+            e_t_next = get_model_output(x_prev, t_next)
+            e_t_prime = (e_t + e_t_next) / 2
+        elif len(old_eps) == 1:
+            # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
+            e_t_prime = (3 * e_t - old_eps[-1]) / 2
+        elif len(old_eps) == 2:
+            # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
+            e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
+        elif len(old_eps) >= 3:
+            # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
+            e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
+
+        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
+
+        return x_prev, pred_x0, e_t
diff --git a/lidm/modules/__init__.py b/lidm/modules/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/modules/attention.py b/lidm/modules/attention.py
new file mode 100644
index 0000000000000000000000000000000000000000..83708247da4a5d293aa6bbc83a15783eb32282df
--- /dev/null
+++ b/lidm/modules/attention.py
@@ -0,0 +1,261 @@
+from inspect import isfunction
+import math
+import torch
+import torch.nn.functional as F
+from torch import nn, einsum
+from einops import rearrange, repeat
+
+from .basic import checkpoint
+
+
+def exists(val):
+    return val is not None
+
+
+def uniq(arr):
+    return{el: True for el in arr}.keys()
+
+
+def default(val, d):
+    if exists(val):
+        return val
+    return d() if isfunction(d) else d
+
+
+def max_neg_value(t):
+    return -torch.finfo(t.dtype).max
+
+
+def init_(tensor):
+    dim = tensor.shape[-1]
+    std = 1 / math.sqrt(dim)
+    tensor.uniform_(-std, std)
+    return tensor
+
+
+# feedforward
+class GEGLU(nn.Module):
+    def __init__(self, dim_in, dim_out):
+        super().__init__()
+        self.proj = nn.Linear(dim_in, dim_out * 2)
+
+    def forward(self, x):
+        x, gate = self.proj(x).chunk(2, dim=-1)
+        return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+        super().__init__()
+        inner_dim = int(dim * mult)
+        dim_out = default(dim_out, dim)
+        project_in = nn.Sequential(
+            nn.Linear(dim, inner_dim),
+            nn.GELU()
+        ) if not glu else GEGLU(dim, inner_dim)
+
+        self.net = nn.Sequential(
+            project_in,
+            nn.Dropout(dropout),
+            nn.Linear(inner_dim, dim_out)
+        )
+
+    def forward(self, x):
+        return self.net(x)
+
+
+def zero_module(module):
+    """
+    Zero out the parameters of a module and return it.
+    """
+    for p in module.parameters():
+        p.detach().zero_()
+    return module
+
+
+def Normalize(in_channels):
+    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class LinearAttention(nn.Module):
+    def __init__(self, dim, heads=4, dim_head=32):
+        super().__init__()
+        self.heads = heads
+        hidden_dim = dim_head * heads
+        self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
+        self.to_out = nn.Conv2d(hidden_dim, dim, 1)
+
+    def forward(self, x):
+        b, c, h, w = x.shape
+        qkv = self.to_qkv(x)
+        q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
+        k = k.softmax(dim=-1)  
+        context = torch.einsum('bhdn,bhen->bhde', k, v)
+        out = torch.einsum('bhde,bhdn->bhen', context, q)
+        out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
+        return self.to_out(out)
+
+
+class SpatialSelfAttention(nn.Module):
+    def __init__(self, in_channels):
+        super().__init__()
+        self.in_channels = in_channels
+
+        self.norm = Normalize(in_channels)
+        self.q = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.k = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.v = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.proj_out = torch.nn.Conv2d(in_channels,
+                                        in_channels,
+                                        kernel_size=1,
+                                        stride=1,
+                                        padding=0)
+
+    def forward(self, x):
+        h_ = x
+        h_ = self.norm(h_)
+        q = self.q(h_)
+        k = self.k(h_)
+        v = self.v(h_)
+
+        # compute attention
+        b,c,h,w = q.shape
+        q = rearrange(q, 'b c h w -> b (h w) c')
+        k = rearrange(k, 'b c h w -> b c (h w)')
+        w_ = torch.einsum('bij,bjk->bik', q, k)
+
+        w_ = w_ * (int(c)**(-0.5))
+        w_ = torch.nn.functional.softmax(w_, dim=2)
+
+        # attend to values
+        v = rearrange(v, 'b c h w -> b c (h w)')
+        w_ = rearrange(w_, 'b i j -> b j i')
+        h_ = torch.einsum('bij,bjk->bik', v, w_)
+        h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
+        h_ = self.proj_out(h_)
+
+        return x+h_
+
+
+class CrossAttention(nn.Module):
+    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
+        super().__init__()
+        inner_dim = dim_head * heads
+        context_dim = default(context_dim, query_dim)
+
+        self.scale = dim_head ** -0.5
+        self.heads = heads
+
+        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
+        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
+        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
+
+        self.to_out = nn.Sequential(
+            nn.Linear(inner_dim, query_dim),
+            nn.Dropout(dropout)
+        )
+
+    def forward(self, x, context=None, mask=None):
+        h = self.heads
+
+        q = self.to_q(x)
+        context = default(context, x)
+        k = self.to_k(context)
+        v = self.to_v(context)
+
+        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
+
+        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
+
+        if exists(mask):
+            mask = rearrange(mask, 'b ... -> b (...)')
+            max_neg_value = -torch.finfo(sim.dtype).max
+            mask = repeat(mask, 'b j -> (b h) () j', h=h)
+            sim.masked_fill_(~mask, max_neg_value)
+
+        # attention, what we cannot get enough of
+        attn = sim.softmax(dim=-1)
+
+        out = einsum('b i j, b j d -> b i d', attn, v)
+        out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
+        return self.to_out(out)
+
+
+class BasicTransformerBlock(nn.Module):
+    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True):
+        super().__init__()
+        self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout)  # is a self-attention
+        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
+        self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim,
+                                    heads=n_heads, dim_head=d_head, dropout=dropout)  # is self-attn if context is none
+        self.norm1 = nn.LayerNorm(dim)
+        self.norm2 = nn.LayerNorm(dim)
+        self.norm3 = nn.LayerNorm(dim)
+        self.checkpoint = checkpoint
+
+    def forward(self, x, context=None):
+        return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
+
+    def _forward(self, x, context=None):
+        x = self.attn1(self.norm1(x)) + x
+        x = self.attn2(self.norm2(x), context=context) + x
+        x = self.ff(self.norm3(x)) + x
+        return x
+
+
+class SpatialTransformer(nn.Module):
+    """
+    Transformer block for image-like data.
+    First, project the input (aka embedding)
+    and reshape to b, t, d.
+    Then apply standard transformer action.
+    Finally, reshape to image
+    """
+    def __init__(self, in_channels, n_heads, d_head,
+                 depth=1, dropout=0., context_dim=None):
+        super().__init__()
+        self.in_channels = in_channels
+        inner_dim = n_heads * d_head
+        self.norm = Normalize(in_channels)
+
+        self.proj_in = nn.Conv2d(in_channels,
+                                 inner_dim,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+
+        self.transformer_blocks = nn.ModuleList(
+            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
+                for d in range(depth)]
+        )
+
+        self.proj_out = zero_module(nn.Conv2d(inner_dim,
+                                              in_channels,
+                                              kernel_size=1,
+                                              stride=1,
+                                              padding=0))
+
+    def forward(self, x, context=None):
+        # note: if no context is given, cross-attention defaults to self-attention
+        b, c, h, w = x.shape
+        x_in = x
+        x = self.norm(x)
+        x = self.proj_in(x)
+        x = rearrange(x, 'b c h w -> b (h w) c')
+        for block in self.transformer_blocks:
+            x = block(x, context=context)
+        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
+        x = self.proj_out(x)
+        return x + x_in
\ No newline at end of file
diff --git a/lidm/modules/basic.py b/lidm/modules/basic.py
new file mode 100644
index 0000000000000000000000000000000000000000..e0571d7a5f33ef7c26b219e20d8f31859936b5ed
--- /dev/null
+++ b/lidm/modules/basic.py
@@ -0,0 +1,392 @@
+# adopted from
+# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
+# and
+# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
+# and
+# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
+#
+# thanks!
+
+
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import repeat
+from torch import Tensor
+
+from ..utils.misc_utils import instantiate_from_config, print_fn
+
+
+class CircularPad(nn.Module):
+    def __init__(self, pad_size):
+        super(CircularPad, self).__init__()
+        h1, h2, v1, v2 = pad_size
+        self.h_pad, self.v_pad = (h1, h2, 0, 0), (0, 0, v1, v2)
+
+    def forward(self, x):
+        if sum(self.h_pad) > 0:
+            x = nn.functional.pad(x, self.h_pad, mode="circular")  # horizontal pad
+        if sum(self.v_pad) > 0:
+            x = nn.functional.pad(x, self.v_pad, mode="constant")  # vertical pad
+        return x
+
+
+class CircularConv2d(nn.Conv2d):
+    def __init__(self, *args, **kwargs):
+        if 'padding' in kwargs:
+            self.is_pad = True
+            if isinstance(kwargs['padding'], int):
+                h1 = h2 = v1 = v2 = kwargs['padding']
+            elif isinstance(kwargs['padding'], tuple):
+                h1, h2, v1, v2 = kwargs['padding']
+            else:
+                raise NotImplementedError
+            self.h_pad, self.v_pad = (h1, h2, 0, 0), (0, 0, v1, v2)
+            del kwargs['padding']
+        else:
+            self.is_pad = False
+
+        super().__init__(*args, **kwargs)
+
+    def forward(self, x: Tensor) -> Tensor:
+        if self.is_pad:
+            if sum(self.h_pad) > 0:
+                x = nn.functional.pad(x, self.h_pad, mode="circular")  # horizontal pad
+            if sum(self.v_pad) > 0:
+                x = nn.functional.pad(x, self.v_pad, mode="constant")  # vertical pad
+        x = self._conv_forward(x, self.weight, self.bias)
+        return x
+
+
+class ActNorm(nn.Module):
+    def __init__(self, num_features, logdet=False, affine=True,
+                 allow_reverse_init=False):
+        assert affine
+        super().__init__()
+        self.logdet = logdet
+        self.loc = nn.Parameter(torch.zeros(1, num_features, 1, 1))
+        self.scale = nn.Parameter(torch.ones(1, num_features, 1, 1))
+        self.allow_reverse_init = allow_reverse_init
+
+        self.register_buffer('initialized', torch.tensor(0, dtype=torch.uint8))
+
+    def initialize(self, input):
+        with torch.no_grad():
+            flatten = input.permute(1, 0, 2, 3).contiguous().view(input.shape[1], -1)
+            mean = (
+                flatten.mean(1)
+                .unsqueeze(1)
+                .unsqueeze(2)
+                .unsqueeze(3)
+                .permute(1, 0, 2, 3)
+            )
+            std = (
+                flatten.std(1)
+                .unsqueeze(1)
+                .unsqueeze(2)
+                .unsqueeze(3)
+                .permute(1, 0, 2, 3)
+            )
+
+            self.loc.data.copy_(-mean)
+            self.scale.data.copy_(1 / (std + 1e-6))
+
+    def forward(self, input, reverse=False):
+        if reverse:
+            return self.reverse(input)
+        if len(input.shape) == 2:
+            input = input[:,:,None,None]
+            squeeze = True
+        else:
+            squeeze = False
+
+        _, _, height, width = input.shape
+
+        if self.training and self.initialized.item() == 0:
+            self.initialize(input)
+            self.initialized.fill_(1)
+
+        h = self.scale * (input + self.loc)
+
+        if squeeze:
+            h = h.squeeze(-1).squeeze(-1)
+
+        if self.logdet:
+            log_abs = torch.log(torch.abs(self.scale))
+            logdet = height*width*torch.sum(log_abs)
+            logdet = logdet * torch.ones(input.shape[0]).to(input)
+            return h, logdet
+
+        return h
+
+    def reverse(self, output):
+        if self.training and self.initialized.item() == 0:
+            if not self.allow_reverse_init:
+                raise RuntimeError(
+                    "Initializing ActNorm in reverse direction is "
+                    "disabled by default. Use allow_reverse_init=True to enable."
+                )
+            else:
+                self.initialize(output)
+                self.initialized.fill_(1)
+
+        if len(output.shape) == 2:
+            output = output[:, :, None, None]
+            squeeze = True
+        else:
+            squeeze = False
+
+        h = output / self.scale - self.loc
+
+        if squeeze:
+            h = h.squeeze(-1).squeeze(-1)
+        return h
+
+
+def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
+    if schedule == "linear":
+        betas = (
+                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
+        )
+
+    elif schedule == "cosine":
+        timesteps = (
+                torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
+        )
+        alphas = timesteps / (1 + cosine_s) * np.pi / 2
+        alphas = torch.cos(alphas).pow(2)
+        alphas = alphas / alphas[0]
+        betas = 1 - alphas[1:] / alphas[:-1]
+        betas = np.clip(betas, a_min=0, a_max=0.999)
+
+    elif schedule == "sqrt_linear":
+        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
+    elif schedule == "sqrt":
+        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
+    else:
+        raise ValueError(f"schedule '{schedule}' unknown.")
+    return betas.numpy()
+
+
+def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=False):
+    if ddim_discr_method == 'uniform':
+        c = num_ddpm_timesteps // num_ddim_timesteps
+        ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
+    elif ddim_discr_method == 'quad':
+        ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
+    else:
+        raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
+
+    # assert ddim_timesteps.shape[0] == num_ddim_timesteps
+    # add one to get the final alpha values right (the ones from first scale to data during sampling)
+    steps_out = ddim_timesteps + 1
+    print_fn(f'Selected timesteps for ddim sampler: {steps_out}', False)
+    return steps_out
+
+
+def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=False):
+    # select alphas for computing the variance schedule
+    alphas = alphacums[ddim_timesteps]
+    alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
+
+    # according the the formula provided in https://arxiv.org/abs/2010.02502
+    sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
+    print_fn(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}', False)
+    print_fn(f'For the chosen value of eta, which is {eta}, this results in the following sigma_t schedule for ddim sampler {sigmas}', False)
+    return sigmas, alphas, alphas_prev
+
+
+def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
+    """
+    Create a beta schedule that discretizes the given alpha_t_bar function,
+    which defines the cumulative product of (1-beta) over time from t = [0,1].
+    :param num_diffusion_timesteps: the number of betas to produce.
+    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
+                      produces the cumulative product of (1-beta) up to that
+                      part of the diffusion process.
+    :param max_beta: the maximum beta to use; use values lower than 1 to
+                     prevent singularities.
+    """
+    betas = []
+    for i in range(num_diffusion_timesteps):
+        t1 = i / num_diffusion_timesteps
+        t2 = (i + 1) / num_diffusion_timesteps
+        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
+    return np.array(betas)
+
+
+def extract_into_tensor(a, t, x_shape):
+    b, *_ = t.shape
+    out = a.gather(-1, t)
+    return out.reshape(b, *((1,) * (len(x_shape) - 1)))
+
+
+def checkpoint(func, inputs, params, flag):
+    """
+    Evaluate a function without caching intermediate activations, allowing for
+    reduced memory at the expense of extra compute in the backward pass.
+    :param func: the function to evaluate.
+    :param inputs: the argument sequence to pass to `func`.
+    :param params: a sequence of parameters `func` depends on but does not
+                   explicitly take as arguments.
+    :param flag: if False, disable gradient checkpointing.
+    """
+    if flag:
+        args = tuple(inputs) + tuple(params)
+        return CheckpointFunction.apply(func, len(inputs), *args)
+    else:
+        return func(*inputs)
+
+
+class CheckpointFunction(torch.autograd.Function):
+    @staticmethod
+    def forward(ctx, run_function, length, *args):
+        ctx.run_function = run_function
+        ctx.input_tensors = list(args[:length])
+        ctx.input_params = list(args[length:])
+
+        with torch.no_grad():
+            output_tensors = ctx.run_function(*ctx.input_tensors)
+        return output_tensors
+
+    @staticmethod
+    def backward(ctx, *output_grads):
+        ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
+        with torch.enable_grad():
+            # Fixes a bug where the first op in run_function modifies the
+            # Tensor storage in place, which is not allowed for detach()'d
+            # Tensors.
+            shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
+            output_tensors = ctx.run_function(*shallow_copies)
+        input_grads = torch.autograd.grad(
+            output_tensors,
+            ctx.input_tensors + ctx.input_params,
+            output_grads,
+            allow_unused=True,
+        )
+        del ctx.input_tensors
+        del ctx.input_params
+        del output_tensors
+        return (None, None) + input_grads
+
+
+def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
+    """
+    Create sinusoidal timestep embeddings.
+    :param timesteps: a 1-D Tensor of N indices, one per batch element.
+                      These may be fractional.
+    :param dim: the dimension of the output.
+    :param max_period: controls the minimum frequency of the embeddings.
+    :return: an [N x dim] Tensor of positional embeddings.
+    """
+    if not repeat_only:
+        half = dim // 2
+        freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(device=timesteps.device)
+        args = timesteps[:, None].float() * freqs[None]
+        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
+        if dim % 2:
+            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
+    else:
+        embedding = repeat(timesteps, 'b -> b d', d=dim)
+    return embedding
+
+
+def zero_module(module):
+    """
+    Zero out the parameters of a module and return it.
+    """
+    for p in module.parameters():
+        p.detach().zero_()
+    return module
+
+
+def scale_module(module, scale):
+    """
+    Scale the parameters of a module and return it.
+    """
+    for p in module.parameters():
+        p.detach().mul_(scale)
+    return module
+
+
+def mean_flat(tensor):
+    """
+    Take the mean over all non-batch dimensions.
+    """
+    return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def normalization(channels):
+    """
+    Make a standard normalization layer.
+    :param channels: number of input channels.
+    :return: an nn.Module for normalization.
+    """
+    return GroupNorm32(32, channels)
+
+
+# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
+class SiLU(nn.Module):
+    def forward(self, x):
+        return x * torch.sigmoid(x)
+
+
+class GroupNorm32(nn.GroupNorm):
+    def forward(self, x):
+        return super().forward(x.float()).type(x.dtype)
+
+
+def conv_nd(dims, *args, cconv=False, **kwargs):
+    """
+    Create a 1D, 2D, or 3D convolution module.
+    """
+    if dims == 1:
+        return nn.Conv1d(*args, **kwargs)
+    elif dims == 2:
+        if cconv:
+            return CircularConv2d(*args, **kwargs)
+        else:
+            return nn.Conv2d(*args, **kwargs)
+    elif dims == 3:
+        return nn.Conv3d(*args, **kwargs)
+    raise ValueError(f"unsupported dimensions: {dims}")
+
+
+def linear(*args, **kwargs):
+    """
+    Create a linear module.
+    """
+    return nn.Linear(*args, **kwargs)
+
+
+def avg_pool_nd(dims, *args, **kwargs):
+    """
+    Create a 1D, 2D, or 3D average pooling module.
+    """
+    if dims == 1:
+        return nn.AvgPool1d(*args, **kwargs)
+    elif dims == 2:
+        return nn.AvgPool2d(*args, **kwargs)
+    elif dims == 3:
+        return nn.AvgPool3d(*args, **kwargs)
+    raise ValueError(f"unsupported dimensions: {dims}")
+
+
+class HybridConditioner(nn.Module):
+
+    def __init__(self, c_concat_config, c_crossattn_config):
+        super().__init__()
+        self.concat_conditioner = instantiate_from_config(c_concat_config)
+        self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
+
+    def forward(self, c_concat, c_crossattn):
+        c_concat = self.concat_conditioner(c_concat)
+        c_crossattn = self.crossattn_conditioner(c_crossattn)
+        return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
+
+
+def noise_like(shape, device, repeat=False):
+    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
+    noise = lambda: torch.randn(shape, device=device)
+    return repeat_noise() if repeat else noise()
\ No newline at end of file
diff --git a/lidm/modules/diffusion/__init__.py b/lidm/modules/diffusion/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/modules/diffusion/model_ldm.py b/lidm/modules/diffusion/model_ldm.py
new file mode 100644
index 0000000000000000000000000000000000000000..5374a1142212bf9292a0fc3fbbfe7ff772aa8d0e
--- /dev/null
+++ b/lidm/modules/diffusion/model_ldm.py
@@ -0,0 +1,817 @@
+# pytorch_diffusion + derived encoder decoder
+import math
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import rearrange
+
+from ...utils.misc_utils import instantiate_from_config
+from ...modules.attention import LinearAttention
+
+
+def get_timestep_embedding(timesteps, embedding_dim):
+    """
+    This matches the implementation in Denoising Diffusion Probabilistic Models:
+    From Fairseq.
+    Build sinusoidal embeddings.
+    This matches the implementation in tensor2tensor, but differs slightly
+    from the description in Section 3.5 of "Attention Is All You Need".
+    """
+    assert len(timesteps.shape) == 1
+
+    half_dim = embedding_dim // 2
+    emb = math.log(10000) / (half_dim - 1)
+    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
+    emb = emb.to(device=timesteps.device)
+    emb = timesteps.float()[:, None] * emb[None, :]
+    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+    if embedding_dim % 2 == 1:  # zero pad
+        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
+    return emb
+
+
+def nonlinearity(x):
+    # swish
+    return x * torch.sigmoid(x)
+
+
+def Normalize(in_channels, num_groups=32):
+    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+class Upsample(nn.Module):
+    def __init__(self, in_channels, with_conv):
+        super().__init__()
+        self.with_conv = with_conv
+        if self.with_conv:
+            self.conv = torch.nn.Conv2d(in_channels,
+                                        in_channels,
+                                        kernel_size=3,
+                                        stride=1,
+                                        padding=1)
+
+    def forward(self, x):
+        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
+        if self.with_conv:
+            x = self.conv(x)
+        return x
+
+
+class Downsample(nn.Module):
+    def __init__(self, in_channels, with_conv):
+        super().__init__()
+        self.with_conv = with_conv
+        if self.with_conv:
+            # no asymmetric padding in torch conv, must do it ourselves
+            self.conv = torch.nn.Conv2d(in_channels,
+                                        in_channels,
+                                        kernel_size=3,
+                                        stride=2,
+                                        padding=0)
+
+    def forward(self, x):
+        if self.with_conv:
+            pad = (0, 1, 0, 1)
+            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
+            x = self.conv(x)
+        else:
+            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
+        return x
+
+
+class ResnetBlock(nn.Module):
+    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
+                 dropout, temb_channels=512):
+        super().__init__()
+        self.in_channels = in_channels
+        out_channels = in_channels if out_channels is None else out_channels
+        self.out_channels = out_channels
+        self.use_conv_shortcut = conv_shortcut
+
+        self.norm1 = Normalize(in_channels)
+        self.conv1 = torch.nn.Conv2d(in_channels,
+                                     out_channels,
+                                     kernel_size=3,
+                                     stride=1,
+                                     padding=1)
+        if temb_channels > 0:
+            self.temb_proj = torch.nn.Linear(temb_channels,
+                                             out_channels)
+        self.norm2 = Normalize(out_channels)
+        self.dropout = torch.nn.Dropout(dropout)
+        self.conv2 = torch.nn.Conv2d(out_channels,
+                                     out_channels,
+                                     kernel_size=3,
+                                     stride=1,
+                                     padding=1)
+        if self.in_channels != self.out_channels:
+            if self.use_conv_shortcut:
+                self.conv_shortcut = torch.nn.Conv2d(in_channels,
+                                                     out_channels,
+                                                     kernel_size=3,
+                                                     stride=1,
+                                                     padding=1)
+            else:
+                self.nin_shortcut = torch.nn.Conv2d(in_channels,
+                                                    out_channels,
+                                                    kernel_size=1,
+                                                    stride=1,
+                                                    padding=0)
+
+    def forward(self, x, temb):
+        h = x
+        h = self.norm1(h)
+        h = nonlinearity(h)
+        h = self.conv1(h)
+
+        if temb is not None:
+            h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
+
+        h = self.norm2(h)
+        h = nonlinearity(h)
+        h = self.dropout(h)
+        h = self.conv2(h)
+
+        if self.in_channels != self.out_channels:
+            if self.use_conv_shortcut:
+                x = self.conv_shortcut(x)
+            else:
+                x = self.nin_shortcut(x)
+
+        return x + h
+
+
+class LinAttnBlock(LinearAttention):
+    """to match AttnBlock usage"""
+
+    def __init__(self, in_channels):
+        super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
+
+
+class AttnBlock(nn.Module):
+    def __init__(self, in_channels):
+        super().__init__()
+        self.in_channels = in_channels
+
+        self.norm = Normalize(in_channels)
+        self.q = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.k = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.v = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.proj_out = torch.nn.Conv2d(in_channels,
+                                        in_channels,
+                                        kernel_size=1,
+                                        stride=1,
+                                        padding=0)
+
+    def forward(self, x):
+        h_ = x
+        h_ = self.norm(h_)
+        q = self.q(h_)
+        k = self.k(h_)
+        v = self.v(h_)
+
+        # compute attention
+        b, c, h, w = q.shape
+        q = q.reshape(b, c, h * w)
+        q = q.permute(0, 2, 1)  # b,hw,c
+        k = k.reshape(b, c, h * w)  # b,c,hw
+        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
+        w_ = w_ * (int(c) ** (-0.5))
+        w_ = torch.nn.functional.softmax(w_, dim=2)
+
+        # attend to values
+        v = v.reshape(b, c, h * w)
+        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
+        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
+        h_ = h_.reshape(b, c, h, w)
+
+        h_ = self.proj_out(h_)
+
+        return x + h_
+
+
+def make_attn(in_channels, attn_type="vanilla"):
+    assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
+    # print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
+    if attn_type == "vanilla":
+        return AttnBlock(in_channels)
+    elif attn_type == "none":
+        return nn.Identity(in_channels)
+    else:
+        return LinAttnBlock(in_channels)
+
+
+class Model(nn.Module):
+    def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
+                 attn_levels, dropout=0.0, resamp_with_conv=True, in_channels,
+                 use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
+        super().__init__()
+        if use_linear_attn: attn_type = "linear"
+        self.ch = ch
+        self.temb_ch = self.ch * 4
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        self.in_channels = in_channels
+
+        self.use_timestep = use_timestep
+        if self.use_timestep:
+            # timestep embedding
+            self.temb = nn.Module()
+            self.temb.dense = nn.ModuleList([
+                torch.nn.Linear(self.ch,
+                                self.temb_ch),
+                torch.nn.Linear(self.temb_ch,
+                                self.temb_ch),
+            ])
+
+        # downsampling
+        self.conv_in = torch.nn.Conv2d(in_channels,
+                                       self.ch,
+                                       kernel_size=3,
+                                       stride=1,
+                                       padding=1)
+
+        in_ch_mult = (1,) + tuple(ch_mult)
+        self.down = nn.ModuleList()
+        for i_level in range(self.num_resolutions):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_in = ch * in_ch_mult[i_level]
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks):
+                block.append(ResnetBlock(in_channels=block_in,
+                                         out_channels=block_out,
+                                         temb_channels=self.temb_ch,
+                                         dropout=dropout))
+                block_in = block_out
+                if i_level in attn_levels:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            down = nn.Module()
+            down.block = block
+            down.attn = attn
+            if i_level != self.num_resolutions - 1:
+                down.downsample = Downsample(block_in, resamp_with_conv)
+            self.down.append(down)
+
+        # middle
+        self.mid = nn.Module()
+        self.mid.block_1 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+        self.mid.block_2 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+
+        # upsampling
+        self.up = nn.ModuleList()
+        for i_level in reversed(range(self.num_resolutions)):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_out = ch * ch_mult[i_level]
+            skip_in = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks + 1):
+                if i_block == self.num_res_blocks:
+                    skip_in = ch * in_ch_mult[i_level]
+                block.append(ResnetBlock(in_channels=block_in + skip_in,
+                                         out_channels=block_out,
+                                         temb_channels=self.temb_ch,
+                                         dropout=dropout))
+                block_in = block_out
+                if i_level in attn_levels:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            up = nn.Module()
+            up.block = block
+            up.attn = attn
+            if i_level != 0:
+                up.upsample = Upsample(block_in, resamp_with_conv)
+            self.up.insert(0, up)  # prepend to get consistent order
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(block_in,
+                                        out_ch,
+                                        kernel_size=3,
+                                        stride=1,
+                                        padding=1)
+
+    def forward(self, x, t=None, context=None):
+        # assert x.shape[2] == x.shape[3] == self.resolution
+        if context is not None:
+            # assume aligned context, cat along channel axis
+            x = torch.cat((x, context), dim=1)
+        if self.use_timestep:
+            # timestep embedding
+            assert t is not None
+            temb = get_timestep_embedding(t, self.ch)
+            temb = self.temb.dense[0](temb)
+            temb = nonlinearity(temb)
+            temb = self.temb.dense[1](temb)
+        else:
+            temb = None
+
+        # downsampling
+        hs = [self.conv_in(x)]
+        for i_level in range(self.num_resolutions):
+            for i_block in range(self.num_res_blocks):
+                h = self.down[i_level].block[i_block](hs[-1], temb)
+                if len(self.down[i_level].attn) > 0:
+                    h = self.down[i_level].attn[i_block](h)
+                hs.append(h)
+            if i_level != self.num_resolutions - 1:
+                hs.append(self.down[i_level].downsample(hs[-1]))
+
+        # middle
+        h = hs[-1]
+        h = self.mid.block_1(h, temb)
+        h = self.mid.attn_1(h)
+        h = self.mid.block_2(h, temb)
+
+        # upsampling
+        for i_level in reversed(range(self.num_resolutions)):
+            for i_block in range(self.num_res_blocks + 1):
+                h = self.up[i_level].block[i_block](
+                    torch.cat([h, hs.pop()], dim=1), temb)
+                if len(self.up[i_level].attn) > 0:
+                    h = self.up[i_level].attn[i_block](h)
+            if i_level != 0:
+                h = self.up[i_level].upsample(h)
+
+        # end
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        return h
+
+    def get_last_layer(self):
+        return self.conv_out.weight
+
+
+class Encoder(nn.Module):
+    def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
+                 attn_levels, dropout=0.0, resamp_with_conv=True, in_channels,
+                 z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
+                 **ignore_kwargs):
+        super().__init__()
+        if use_linear_attn: attn_type = "linear"
+        self.ch = ch
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        self.in_channels = in_channels
+
+        # downsampling
+        self.conv_in = torch.nn.Conv2d(in_channels,
+                                       self.ch,
+                                       kernel_size=3,
+                                       stride=1,
+                                       padding=1)
+
+        in_ch_mult = (1,) + tuple(ch_mult)
+        self.in_ch_mult = in_ch_mult
+        self.down = nn.ModuleList()
+        for i_level in range(self.num_resolutions):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_in = ch * in_ch_mult[i_level]
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks):
+                block.append(ResnetBlock(in_channels=block_in,
+                                         out_channels=block_out,
+                                         temb_channels=self.temb_ch,
+                                         dropout=dropout))
+                block_in = block_out
+                if i_level in attn_levels:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            down = nn.Module()
+            down.block = block
+            down.attn = attn
+            if i_level != self.num_resolutions - 1:
+                down.downsample = Downsample(block_in, resamp_with_conv)
+            self.down.append(down)
+
+        # middle
+        self.mid = nn.Module()
+        self.mid.block_1 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+        self.mid.block_2 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(block_in,
+                                        2 * z_channels if double_z else z_channels,
+                                        kernel_size=3,
+                                        stride=1,
+                                        padding=1)
+
+    def forward(self, x):
+        # timestep embedding
+        temb = None
+        # downsampling
+        hs = [self.conv_in(x)]
+        for i_level in range(self.num_resolutions):
+            for i_block in range(self.num_res_blocks):
+                h = self.down[i_level].block[i_block](hs[-1], temb)
+                if len(self.down[i_level].attn) > 0:
+                    h = self.down[i_level].attn[i_block](h)
+                hs.append(h)
+            if i_level != self.num_resolutions - 1:
+                hs.append(self.down[i_level].downsample(hs[-1]))
+
+        # middle
+        h = hs[-1]
+        h = self.mid.block_1(h, temb)
+        h = self.mid.attn_1(h)
+        h = self.mid.block_2(h, temb)
+
+        # end
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        return h
+
+
+class Decoder(nn.Module):
+    def __init__(self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks,
+                 attn_levels, dropout=0.0, resamp_with_conv=True, in_channels,
+                 z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
+                 attn_type="vanilla", **ignorekwargs):
+        super().__init__()
+        if use_linear_attn: attn_type = "linear"
+        self.ch = ch
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        self.in_channels = in_channels
+        self.give_pre_end = give_pre_end
+        self.tanh_out = tanh_out
+
+        # compute in_ch_mult, block_in and curr_res at lowest res
+        in_ch_mult = (1,) + tuple(ch_mult)
+        block_in = ch * ch_mult[self.num_resolutions - 1]
+
+        # z to block_in
+        self.conv_in = torch.nn.Conv2d(z_channels,
+                                       block_in,
+                                       kernel_size=3,
+                                       stride=1,
+                                       padding=1)
+
+        # middle
+        self.mid = nn.Module()
+        self.mid.block_1 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+        self.mid.block_2 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+
+        # upsampling
+        self.up = nn.ModuleList()
+        for i_level in reversed(range(self.num_resolutions)):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks + 1):
+                block.append(ResnetBlock(in_channels=block_in,
+                                         out_channels=block_out,
+                                         temb_channels=self.temb_ch,
+                                         dropout=dropout))
+                block_in = block_out
+                if i_level in attn_levels:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            up = nn.Module()
+            up.block = block
+            up.attn = attn
+            if i_level != 0:
+                up.upsample = Upsample(block_in, resamp_with_conv)
+            self.up.insert(0, up)  # prepend to get consistent order
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(block_in,
+                                        out_ch,
+                                        kernel_size=3,
+                                        stride=1,
+                                        padding=1)
+
+    def forward(self, z):
+        self.last_z_shape = z.shape
+
+        # timestep embedding
+        temb = None
+
+        # z to block_in
+        h = self.conv_in(z)
+
+        # middle
+        h = self.mid.block_1(h, temb)
+        h = self.mid.attn_1(h)
+        h = self.mid.block_2(h, temb)
+
+        # upsampling
+        for i_level in reversed(range(self.num_resolutions)):
+            for i_block in range(self.num_res_blocks + 1):
+                h = self.up[i_level].block[i_block](h, temb)
+                if len(self.up[i_level].attn) > 0:
+                    h = self.up[i_level].attn[i_block](h)
+            if i_level != 0:
+                h = self.up[i_level].upsample(h)
+
+        # end
+        if self.give_pre_end:
+            return h
+
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        if self.tanh_out:
+            h = torch.tanh(h)
+        return h
+
+
+class SimpleDecoder(nn.Module):
+    def __init__(self, in_channels, out_channels, *args, **kwargs):
+        super().__init__()
+        self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
+                                    ResnetBlock(in_channels=in_channels,
+                                                out_channels=2 * in_channels,
+                                                temb_channels=0, dropout=0.0),
+                                    ResnetBlock(in_channels=2 * in_channels,
+                                                out_channels=4 * in_channels,
+                                                temb_channels=0, dropout=0.0),
+                                    ResnetBlock(in_channels=4 * in_channels,
+                                                out_channels=2 * in_channels,
+                                                temb_channels=0, dropout=0.0),
+                                    nn.Conv2d(2 * in_channels, in_channels, 1),
+                                    Upsample(in_channels, with_conv=True)])
+        # end
+        self.norm_out = Normalize(in_channels)
+        self.conv_out = torch.nn.Conv2d(in_channels,
+                                        out_channels,
+                                        kernel_size=3,
+                                        stride=1,
+                                        padding=1)
+
+    def forward(self, x):
+        for i, layer in enumerate(self.model):
+            if i in [1, 2, 3]:
+                x = layer(x, None)
+            else:
+                x = layer(x)
+
+        h = self.norm_out(x)
+        h = nonlinearity(h)
+        x = self.conv_out(h)
+        return x
+
+
+class UpsampleDecoder(nn.Module):
+    def __init__(self, in_channels, out_channels, ch, num_res_blocks,
+                 ch_mult=(2, 2), dropout=0.0):
+        super().__init__()
+        # upsampling
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        block_in = in_channels
+        self.res_blocks = nn.ModuleList()
+        self.upsample_blocks = nn.ModuleList()
+        for i_level in range(self.num_resolutions):
+            res_block = []
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks + 1):
+                res_block.append(ResnetBlock(in_channels=block_in,
+                                             out_channels=block_out,
+                                             temb_channels=self.temb_ch,
+                                             dropout=dropout))
+                block_in = block_out
+            self.res_blocks.append(nn.ModuleList(res_block))
+            if i_level != self.num_resolutions - 1:
+                self.upsample_blocks.append(Upsample(block_in, True))
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(block_in,
+                                        out_channels,
+                                        kernel_size=3,
+                                        stride=1,
+                                        padding=1)
+
+    def forward(self, x):
+        # upsampling
+        h = x
+        for k, i_level in enumerate(range(self.num_resolutions)):
+            for i_block in range(self.num_res_blocks + 1):
+                h = self.res_blocks[i_level][i_block](h, None)
+            if i_level != self.num_resolutions - 1:
+                h = self.upsample_blocks[k](h)
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        return h
+
+
+class LatentRescaler(nn.Module):
+    def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
+        super().__init__()
+        # residual block, interpolate, residual block
+        self.factor = factor
+        self.conv_in = nn.Conv2d(in_channels,
+                                 mid_channels,
+                                 kernel_size=3,
+                                 stride=1,
+                                 padding=1)
+        self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+                                                     out_channels=mid_channels,
+                                                     temb_channels=0,
+                                                     dropout=0.0) for _ in range(depth)])
+        self.attn = AttnBlock(mid_channels)
+        self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+                                                     out_channels=mid_channels,
+                                                     temb_channels=0,
+                                                     dropout=0.0) for _ in range(depth)])
+
+        self.conv_out = nn.Conv2d(mid_channels,
+                                  out_channels,
+                                  kernel_size=1,
+                                  )
+
+    def forward(self, x):
+        x = self.conv_in(x)
+        for block in self.res_block1:
+            x = block(x, None)
+        x = torch.nn.functional.interpolate(x, size=(
+        int(round(x.shape[2] * self.factor)), int(round(x.shape[3] * self.factor))))
+        x = self.attn(x)
+        for block in self.res_block2:
+            x = block(x, None)
+        x = self.conv_out(x)
+        return x
+
+
+class MergedRescaleEncoder(nn.Module):
+    def __init__(self, in_channels, ch, out_ch, num_res_blocks,
+                 attn_levels, dropout=0.0, resamp_with_conv=True,
+                 ch_mult=(1, 2, 4, 8), rescale_factor=1.0, rescale_module_depth=1):
+        super().__init__()
+        intermediate_chn = ch * ch_mult[-1]
+        self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
+                               z_channels=intermediate_chn, double_z=False,
+                               attn_levels=attn_levels, dropout=dropout, resamp_with_conv=resamp_with_conv,
+                               out_ch=None)
+        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
+                                       mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
+
+    def forward(self, x):
+        x = self.encoder(x)
+        x = self.rescaler(x)
+        return x
+
+
+class MergedRescaleDecoder(nn.Module):
+    def __init__(self, z_channels, out_ch, num_res_blocks, attn_levels, ch, ch_mult=(1, 2, 4, 8),
+                 dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
+        super().__init__()
+        tmp_chn = z_channels * ch_mult[-1]
+        self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_levels=attn_levels, dropout=dropout,
+                               resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
+                               ch_mult=ch_mult, ch=ch)
+        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
+                                       out_channels=tmp_chn, depth=rescale_module_depth)
+
+    def forward(self, x):
+        x = self.rescaler(x)
+        x = self.decoder(x)
+        return x
+
+
+class Upsampler(nn.Module):
+    def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
+        super().__init__()
+        assert out_size >= in_size
+        num_blocks = int(np.log2(out_size // in_size)) + 1
+        factor_up = 1. + (out_size % in_size)
+        print(
+            f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
+        self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2 * in_channels,
+                                       out_channels=in_channels)
+        self.decoder = Decoder(out_ch=out_channels, z_channels=in_channels, num_res_blocks=2,
+                               attn_levels=[], in_channels=None, ch=in_channels,
+                               ch_mult=[ch_mult for _ in range(num_blocks)])
+
+    def forward(self, x):
+        x = self.rescaler(x)
+        x = self.decoder(x)
+        return x
+
+
+class Resize(nn.Module):
+    def __init__(self, in_channels=None, learned=False, mode="bilinear"):
+        super().__init__()
+        self.with_conv = learned
+        self.mode = mode
+        if self.with_conv:
+            print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
+            raise NotImplementedError()
+            assert in_channels is not None
+            # no asymmetric padding in torch conv, must do it ourselves
+            self.conv = torch.nn.Conv2d(in_channels,
+                                        in_channels,
+                                        kernel_size=4,
+                                        stride=2,
+                                        padding=1)
+
+    def forward(self, x, scale_factor=1.0):
+        if scale_factor == 1.0:
+            return x
+        else:
+            x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
+        return x
+
+
+class FirstStagePostProcessor(nn.Module):
+
+    def __init__(self, ch_mult: list, in_channels,
+                 pretrained_model: nn.Module = None,
+                 reshape=False,
+                 n_channels=None,
+                 dropout=0.,
+                 pretrained_config=None):
+        super().__init__()
+        if pretrained_config is None:
+            assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+            self.pretrained_model = pretrained_model
+        else:
+            assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+            self.instantiate_pretrained(pretrained_config)
+
+        self.do_reshape = reshape
+
+        if n_channels is None:
+            n_channels = self.pretrained_model.encoder.ch
+
+        self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2)
+        self.proj = nn.Conv2d(in_channels, n_channels, kernel_size=3,
+                              stride=1, padding=1)
+
+        blocks = []
+        downs = []
+        ch_in = n_channels
+        for m in ch_mult:
+            blocks.append(ResnetBlock(in_channels=ch_in, out_channels=m * n_channels, dropout=dropout))
+            ch_in = m * n_channels
+            downs.append(Downsample(ch_in, with_conv=False))
+
+        self.model = nn.ModuleList(blocks)
+        self.downsampler = nn.ModuleList(downs)
+
+    def instantiate_pretrained(self, config):
+        model = instantiate_from_config(config)
+        self.pretrained_model = model.eval()
+        # self.pretrained_model.train = False
+        for param in self.pretrained_model.parameters():
+            param.requires_grad = False
+
+    @torch.no_grad()
+    def encode_with_pretrained(self, x):
+        c = self.pretrained_model.encode(x)
+        if isinstance(c, DiagonalGaussianDistribution):
+            c = c.mode()
+        return c
+
+    def forward(self, x):
+        z_fs = self.encode_with_pretrained(x)
+        z = self.proj_norm(z_fs)
+        z = self.proj(z)
+        z = nonlinearity(z)
+
+        for submodel, downmodel in zip(self.model, self.downsampler):
+            z = submodel(z, temb=None)
+            z = downmodel(z)
+
+        if self.do_reshape:
+            z = rearrange(z, 'b c h w -> b (h w) c')
+        return z
diff --git a/lidm/modules/diffusion/model_lidm.py b/lidm/modules/diffusion/model_lidm.py
new file mode 100644
index 0000000000000000000000000000000000000000..2803291c509d6d7c8bc5d5fb519fd7c46fd14707
--- /dev/null
+++ b/lidm/modules/diffusion/model_lidm.py
@@ -0,0 +1,681 @@
+# pytorch_diffusion + derived encoder decoder
+import math
+
+import torch
+import torch.nn as nn
+import numpy as np
+from einops import rearrange
+
+from ..basic import CircularConv2d
+from ...utils.misc_utils import instantiate_from_config
+from ...modules.attention import LinearAttention
+
+
+def get_timestep_embedding(timesteps, embedding_dim):
+    """
+    This matches the implementation in Denoising Diffusion Probabilistic Models:
+    From Fairseq.
+    Build sinusoidal embeddings.
+    This matches the implementation in tensor2tensor, but differs slightly
+    from the description in Section 3.5 of "Attention Is All You Need".
+    """
+    assert len(timesteps.shape) == 1
+
+    half_dim = embedding_dim // 2
+    emb = math.log(10000) / (half_dim - 1)
+    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
+    emb = emb.to(device=timesteps.device)
+    emb = timesteps.float()[:, None] * emb[None, :]
+    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
+    if embedding_dim % 2 == 1:  # zero pad
+        emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
+    return emb
+
+
+def nonlinearity(x):
+    # swish
+    return x * torch.sigmoid(x)
+
+
+def Normalize(in_channels, num_groups=32):
+    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
+
+
+UPSAMPLE_STRIDE2KERNEL_DICT = {(1, 2): (1, 5), (1, 4): (1, 7), (2, 1): (5, 1), (2, 2): (3, 3)}
+UPSAMPLE_STRIDE2PAD_DICT = {(1, 2): (2, 2, 0, 0), (1, 4): (3, 3, 0, 0), (2, 1): (0, 0, 2, 2), (2, 2): (1, 1, 1, 1)}
+
+
+class Upsample(nn.Module):
+    def __init__(self, in_channels, with_conv, stride):
+        super().__init__()
+        self.with_conv = with_conv
+        self.stride = stride
+        if self.with_conv:
+            k, p = UPSAMPLE_STRIDE2KERNEL_DICT[stride], UPSAMPLE_STRIDE2PAD_DICT[stride]
+            self.conv = CircularConv2d(in_channels, in_channels, kernel_size=k, padding=p)
+
+    def forward(self, x):
+        x = torch.nn.functional.interpolate(x, scale_factor=self.stride, mode='bilinear', align_corners=True)
+        if self.with_conv:
+            x = self.conv(x)
+        return x
+
+
+DOWNSAMPLE_STRIDE2KERNEL_DICT = {(1, 2): (3, 3), (1, 4): (3, 5), (2, 1): (3, 3), (2, 2): (3, 3)}
+DOWNSAMPLE_STRIDE2PAD_DICT = {(1, 2): (0, 1, 1, 1), (1, 4): (1, 1, 1, 1), (2, 1): (1, 1, 1, 1), (2, 2): (0, 1, 0, 1)}
+
+
+class Downsample(nn.Module):
+    def __init__(self, in_channels, with_conv, stride):
+        super().__init__()
+        self.with_conv = with_conv
+        self.stride = stride
+        if self.with_conv:
+            k, p = DOWNSAMPLE_STRIDE2KERNEL_DICT[stride], DOWNSAMPLE_STRIDE2PAD_DICT[stride]
+            self.conv = CircularConv2d(in_channels, in_channels, kernel_size=k, stride=stride, padding=p)
+
+    def forward(self, x):
+        if self.with_conv:
+            x = self.conv(x)
+        else:
+            x = torch.nn.functional.avg_pool2d(x, kernel_size=self.stride, stride=self.stride)  # modified for lidar
+        return x
+
+
+UNIFORM_KERNEL2PAD_DICT = {(3, 3): (1, 1, 1, 1), (1, 4): (1, 2, 0, 0)}
+
+
+class ResnetBlock(nn.Module):
+    def __init__(self, *, in_channels, out_channels=None, kernel_size=(3, 3), conv_shortcut=False,
+                 dropout, temb_channels=512):
+        super().__init__()
+        self.in_channels = in_channels
+        out_channels = in_channels if out_channels is None else out_channels
+        self.out_channels = out_channels
+        self.use_conv_shortcut = conv_shortcut
+        pad = UNIFORM_KERNEL2PAD_DICT[kernel_size]
+
+        self.norm1 = Normalize(in_channels)
+        self.conv1 = CircularConv2d(in_channels,
+                                    out_channels,
+                                    kernel_size=kernel_size,
+                                    stride=1,
+                                    padding=pad)
+        if temb_channels > 0:
+            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
+        self.norm2 = Normalize(out_channels)
+        self.dropout = torch.nn.Dropout(dropout)
+        self.conv2 = CircularConv2d(out_channels,
+                                    out_channels,
+                                    kernel_size=kernel_size,
+                                    stride=1,
+                                    padding=pad)
+        if self.in_channels != self.out_channels:
+            if self.use_conv_shortcut:
+                self.conv_shortcut = CircularConv2d(in_channels,
+                                                    out_channels,
+                                                    kernel_size=kernel_size,
+                                                    stride=1,
+                                                    padding=pad)
+            else:
+                self.nin_shortcut = torch.nn.Conv2d(in_channels,
+                                                    out_channels,
+                                                    kernel_size=1,
+                                                    stride=1,
+                                                    padding=0)
+
+    def forward(self, x, temb):
+        h = x
+        h = self.norm1(h)
+        h = nonlinearity(h)
+        h = self.conv1(h)
+
+        if temb is not None:
+            h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
+
+        h = self.norm2(h)
+        h = nonlinearity(h)
+        h = self.dropout(h)
+        h = self.conv2(h)
+
+        if self.in_channels != self.out_channels:
+            if self.use_conv_shortcut:
+                x = self.conv_shortcut(x)
+            else:
+                x = self.nin_shortcut(x)
+
+        return x + h
+
+
+class LinAttnBlock(LinearAttention):
+    """to match AttnBlock usage"""
+
+    def __init__(self, in_channels):
+        super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
+
+
+class AttnBlock(nn.Module):
+    def __init__(self, in_channels):
+        super().__init__()
+        self.in_channels = in_channels
+
+        self.norm = Normalize(in_channels)
+        self.q = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.k = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.v = torch.nn.Conv2d(in_channels,
+                                 in_channels,
+                                 kernel_size=1,
+                                 stride=1,
+                                 padding=0)
+        self.proj_out = torch.nn.Conv2d(in_channels,
+                                        in_channels,
+                                        kernel_size=1,
+                                        stride=1,
+                                        padding=0)
+
+    def forward(self, x):
+        h_ = x
+        h_ = self.norm(h_)
+        q = self.q(h_)
+        k = self.k(h_)
+        v = self.v(h_)
+
+        # compute attention
+        b, c, h, w = q.shape
+        q = q.reshape(b, c, h * w)
+        q = q.permute(0, 2, 1)  # b,hw,c
+        k = k.reshape(b, c, h * w)  # b,c,hw
+        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
+        w_ = w_ * (int(c) ** (-0.5))
+        w_ = torch.nn.functional.softmax(w_, dim=2)
+
+        # attend to values
+        v = v.reshape(b, c, h * w)
+        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
+        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
+        h_ = h_.reshape(b, c, h, w)
+
+        h_ = self.proj_out(h_)
+
+        return x + h_
+
+
+def make_attn(in_channels, attn_type="vanilla"):
+    assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
+    # print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
+    if attn_type == "vanilla":
+        return AttnBlock(in_channels)
+    elif attn_type == "none":
+        return nn.Identity(in_channels)
+    else:
+        return LinAttnBlock(in_channels)
+
+
+class Encoder(nn.Module):
+    def __init__(self, *, ch, out_ch, ch_mult, strides, num_res_blocks,
+                 attn_levels, dropout=0.0, resamp_with_conv=True, in_channels, z_channels,
+                 double_z=True, use_linear_attn=False, attn_type="vanilla", use_mask=False,
+                 **ignore_kwargs):
+        super().__init__()
+        if use_mask:
+            assert out_ch == in_channels + 1, 'Set "out_ch = out_ch + 1" for mask prediction.'
+        if use_linear_attn: attn_type = "linear"
+        self.ch = ch
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        self.in_channels = in_channels
+
+        # downsampling
+        self.conv_in = CircularConv2d(in_channels,
+                                      self.ch,
+                                      kernel_size=3,
+                                      stride=1,
+                                      padding=1)
+        in_ch_mult = (1,) + tuple(ch_mult)
+        self.in_ch_mult = in_ch_mult
+        self.down = nn.ModuleList()
+        for i_level in range(self.num_resolutions):
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_in = ch * in_ch_mult[i_level]
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks):
+                block.append(ResnetBlock(in_channels=block_in,
+                                         out_channels=block_out,
+                                         temb_channels=self.temb_ch,
+                                         dropout=dropout))
+                block_in = block_out
+                if i_level in attn_levels:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            down = nn.Module()
+            down.block = block
+            down.attn = attn
+            if i_level != self.num_resolutions - 1:
+                stride = tuple(strides[i_level])
+                down.downsample = Downsample(block_in, resamp_with_conv, stride)
+            self.down.append(down)
+
+        # middle
+        self.mid = nn.Module()
+        self.mid.block_1 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+        self.mid.block_2 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = CircularConv2d(block_in,
+                                       2 * z_channels if double_z else z_channels,
+                                       kernel_size=3,
+                                       stride=1,
+                                       padding=1)
+
+    def forward(self, x):
+        # timestep embedding
+        temb = None
+
+        # downsampling
+        hs = [self.conv_in(x)]
+        for i_level in range(self.num_resolutions):
+            for i_block in range(self.num_res_blocks):
+                h = self.down[i_level].block[i_block](hs[-1], temb)
+                if len(self.down[i_level].attn) > 0:
+                    h = self.down[i_level].attn[i_block](h)
+                hs.append(h)
+            if i_level != self.num_resolutions - 1:
+                hs.append(self.down[i_level].downsample(hs[-1]))
+
+        # middle
+        h = hs[-1]
+        h = self.mid.block_1(h, temb)
+        h = self.mid.attn_1(h)
+        h = self.mid.block_2(h, temb)
+
+        # end
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        return h
+
+
+class Decoder(nn.Module):
+    def __init__(self, *, ch, out_ch, ch_mult, strides, num_res_blocks, attn_levels,
+                 dropout=0.0, resamp_with_conv=True, in_channels, z_channels, give_pre_end=False,
+                 tanh_out=False, use_linear_attn=False, attn_type="vanilla", use_mask=False,
+                 **ignorekwargs):
+        super().__init__()
+        stride2kernel = {(2, 2): (3, 3), (1, 2): (1, 4)}
+        if use_linear_attn: attn_type = "linear"
+        self.ch = ch
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        self.in_channels = in_channels
+        self.give_pre_end = give_pre_end
+        self.tanh_out = tanh_out
+
+        # compute in_ch_mult, block_in and curr_res at lowest res
+        block_in = ch * ch_mult[self.num_resolutions - 1]
+
+        # z to block_in
+        self.conv_in = CircularConv2d(z_channels,
+                                      block_in,
+                                      kernel_size=3,
+                                      stride=1,
+                                      padding=1)
+
+        # middle
+        self.mid = nn.Module()
+        self.mid.block_1 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
+        self.mid.block_2 = ResnetBlock(in_channels=block_in,
+                                       out_channels=block_in,
+                                       temb_channels=self.temb_ch,
+                                       dropout=dropout)
+
+        # upsampling
+        self.up = nn.ModuleList()
+        for i_level in reversed(range(self.num_resolutions)):
+            stride = tuple(strides[i_level - 1]) if i_level > 0 else None
+            kernel = stride2kernel[stride] if stride is not None else (1, 4)
+            block = nn.ModuleList()
+            attn = nn.ModuleList()
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks + 1):
+                block.append(ResnetBlock(in_channels=block_in,
+                                         out_channels=block_out,
+                                         kernel_size=kernel,
+                                         temb_channels=self.temb_ch,
+                                         dropout=dropout))
+                block_in = block_out
+                if i_level in attn_levels:
+                    attn.append(make_attn(block_in, attn_type=attn_type))
+            up = nn.Module()
+            up.block = block
+            up.attn = attn
+            if stride is not None:
+                up.upsample = Upsample(block_in, resamp_with_conv, stride)
+            self.up.insert(0, up)  # prepend to get consistent order
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = CircularConv2d(block_in,
+                                       out_ch,
+                                       kernel_size=(1, 4),
+                                       stride=1,
+                                       padding=(1, 2, 0, 0))
+
+    def forward(self, z):
+        self.last_z_shape = z.shape
+
+        # timestep embedding
+        temb = None
+
+        # z to block_in
+        h = self.conv_in(z)
+
+        # middle
+        h = self.mid.block_1(h, temb)
+        h = self.mid.attn_1(h)
+        h = self.mid.block_2(h, temb)
+
+        # upsampling
+        for i_level in reversed(range(self.num_resolutions)):
+            for i_block in range(self.num_res_blocks + 1):
+                h = self.up[i_level].block[i_block](h, temb)
+                if len(self.up[i_level].attn) > 0:
+                    h = self.up[i_level].attn[i_block](h)
+            if i_level != 0:
+                h = self.up[i_level].upsample(h)
+
+        # end
+        if self.give_pre_end:
+            return h
+
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        if self.tanh_out:
+            h = torch.tanh(h)
+        return h
+
+
+class SimpleDecoder(nn.Module):
+    def __init__(self, in_channels, out_channels, *args, **kwargs):
+        super().__init__()
+        self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
+                                    ResnetBlock(in_channels=in_channels,
+                                                out_channels=2 * in_channels,
+                                                temb_channels=0, dropout=0.0),
+                                    ResnetBlock(in_channels=2 * in_channels,
+                                                out_channels=4 * in_channels,
+                                                temb_channels=0, dropout=0.0),
+                                    ResnetBlock(in_channels=4 * in_channels,
+                                                out_channels=2 * in_channels,
+                                                temb_channels=0, dropout=0.0),
+                                    nn.Conv2d(2 * in_channels, in_channels, 1),
+                                    Upsample(in_channels, with_conv=True)])
+        # end
+        self.norm_out = Normalize(in_channels)
+        self.conv_out = torch.nn.Conv2d(in_channels,
+                                        out_channels,
+                                        kernel_size=3,
+                                        stride=1,
+                                        padding=1)
+
+    def forward(self, x):
+        for i, layer in enumerate(self.model):
+            if i in [1, 2, 3]:
+                x = layer(x, None)
+            else:
+                x = layer(x)
+
+        h = self.norm_out(x)
+        h = nonlinearity(h)
+        x = self.conv_out(h)
+        return x
+
+
+class UpsampleDecoder(nn.Module):
+    def __init__(self, in_channels, out_channels, ch, num_res_blocks,
+                 ch_mult=(2, 2), dropout=0.0):
+        super().__init__()
+        # upsampling
+        self.temb_ch = 0
+        self.num_resolutions = len(ch_mult)
+        self.num_res_blocks = num_res_blocks
+        block_in = in_channels
+        self.res_blocks = nn.ModuleList()
+        self.upsample_blocks = nn.ModuleList()
+        for i_level in range(self.num_resolutions):
+            res_block = []
+            block_out = ch * ch_mult[i_level]
+            for i_block in range(self.num_res_blocks + 1):
+                res_block.append(ResnetBlock(in_channels=block_in,
+                                             out_channels=block_out,
+                                             temb_channels=self.temb_ch,
+                                             dropout=dropout))
+                block_in = block_out
+            self.res_blocks.append(nn.ModuleList(res_block))
+            if i_level != self.num_resolutions - 1:
+                self.upsample_blocks.append(Upsample(block_in, True))
+
+        # end
+        self.norm_out = Normalize(block_in)
+        self.conv_out = torch.nn.Conv2d(block_in,
+                                        out_channels,
+                                        kernel_size=3,
+                                        stride=1,
+                                        padding=1)
+
+    def forward(self, x):
+        # upsampling
+        h = x
+        for k, i_level in enumerate(range(self.num_resolutions)):
+            for i_block in range(self.num_res_blocks + 1):
+                h = self.res_blocks[i_level][i_block](h, None)
+            if i_level != self.num_resolutions - 1:
+                h = self.upsample_blocks[k](h)
+        h = self.norm_out(h)
+        h = nonlinearity(h)
+        h = self.conv_out(h)
+        return h
+
+
+class LatentRescaler(nn.Module):
+    def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
+        super().__init__()
+        # residual block, interpolate, residual block
+        self.factor = factor
+        self.conv_in = nn.Conv2d(in_channels,
+                                 mid_channels,
+                                 kernel_size=3,
+                                 stride=1,
+                                 padding=1)
+        self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+                                                     out_channels=mid_channels,
+                                                     temb_channels=0,
+                                                     dropout=0.0) for _ in range(depth)])
+        self.attn = AttnBlock(mid_channels)
+        self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
+                                                     out_channels=mid_channels,
+                                                     temb_channels=0,
+                                                     dropout=0.0) for _ in range(depth)])
+
+        self.conv_out = nn.Conv2d(mid_channels,
+                                  out_channels,
+                                  kernel_size=1,
+                                  )
+
+    def forward(self, x):
+        x = self.conv_in(x)
+        for block in self.res_block1:
+            x = block(x, None)
+        x = torch.nn.functional.interpolate(x, size=(
+            int(round(x.shape[2] * self.factor)), int(round(x.shape[3] * self.factor))))
+        x = self.attn(x)
+        for block in self.res_block2:
+            x = block(x, None)
+        x = self.conv_out(x)
+        return x
+
+
+class MergedRescaleEncoder(nn.Module):
+    def __init__(self, in_channels, ch, out_ch, num_res_blocks,
+                 attn_levels, dropout=0.0, resamp_with_conv=True,
+                 ch_mult=(1, 2, 4, 8), rescale_factor=1.0, rescale_module_depth=1):
+        super().__init__()
+        intermediate_chn = ch * ch_mult[-1]
+        self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
+                               z_channels=intermediate_chn, double_z=False, attn_levels=attn_levels, dropout=dropout,
+                               resamp_with_conv=resamp_with_conv, out_ch=None)
+        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
+                                       mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
+
+    def forward(self, x):
+        x = self.encoder(x)
+        x = self.rescaler(x)
+        return x
+
+
+class MergedRescaleDecoder(nn.Module):
+    def __init__(self, z_channels, out_ch, num_res_blocks, attn_levels, ch, ch_mult=(1, 2, 4, 8),
+                 dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
+        super().__init__()
+        tmp_chn = z_channels * ch_mult[-1]
+        self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_levels=attn_levels, dropout=dropout,
+                               resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
+                               ch_mult=ch_mult, ch=ch)
+        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
+                                       out_channels=tmp_chn, depth=rescale_module_depth)
+
+    def forward(self, x):
+        x = self.rescaler(x)
+        x = self.decoder(x)
+        return x
+
+
+class Upsampler(nn.Module):
+    def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
+        super().__init__()
+        assert out_size >= in_size
+        num_blocks = int(np.log2(out_size // in_size)) + 1
+        factor_up = 1. + (out_size % in_size)
+        print(
+            f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
+        self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2 * in_channels,
+                                       out_channels=in_channels)
+        self.decoder = Decoder(out_ch=out_channels, z_channels=in_channels, num_res_blocks=2,
+                               attn_levels=[], in_channels=None, ch=in_channels,
+                               ch_mult=[ch_mult for _ in range(num_blocks)])
+
+    def forward(self, x):
+        x = self.rescaler(x)
+        x = self.decoder(x)
+        return x
+
+
+class Resize(nn.Module):
+    def __init__(self, in_channels=None, learned=False, mode="bilinear"):
+        super().__init__()
+        self.with_conv = learned
+        self.mode = mode
+        if self.with_conv:
+            print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
+            raise NotImplementedError()
+            assert in_channels is not None
+            # no asymmetric padding in torch conv, must do it ourselves
+            self.conv = torch.nn.Conv2d(in_channels,
+                                        in_channels,
+                                        kernel_size=4,
+                                        stride=2,
+                                        padding=1)
+
+    def forward(self, x, scale_factor=1.0):
+        if scale_factor == 1.0:
+            return x
+        else:
+            x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
+        return x
+
+
+class FirstStagePostProcessor(nn.Module):
+
+    def __init__(self, ch_mult: list, in_channels,
+                 pretrained_model: nn.Module = None,
+                 reshape=False,
+                 n_channels=None,
+                 dropout=0.,
+                 pretrained_config=None):
+        super().__init__()
+        if pretrained_config is None:
+            assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+            self.pretrained_model = pretrained_model
+        else:
+            assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
+            self.instantiate_pretrained(pretrained_config)
+
+        self.do_reshape = reshape
+
+        if n_channels is None:
+            n_channels = self.pretrained_model.encoder.ch
+
+        self.proj_norm = Normalize(in_channels, num_groups=in_channels // 2)
+        self.proj = nn.Conv2d(in_channels, n_channels, kernel_size=3,
+                              stride=1, padding=1)
+
+        blocks = []
+        downs = []
+        ch_in = n_channels
+        for m in ch_mult:
+            blocks.append(ResnetBlock(in_channels=ch_in, out_channels=m * n_channels, dropout=dropout))
+            ch_in = m * n_channels
+            downs.append(Downsample(ch_in, with_conv=False))
+
+        self.model = nn.ModuleList(blocks)
+        self.downsampler = nn.ModuleList(downs)
+
+    def instantiate_pretrained(self, config):
+        model = instantiate_from_config(config)
+        self.pretrained_model = model.eval()
+        # self.pretrained_model.train = False
+        for param in self.pretrained_model.parameters():
+            param.requires_grad = False
+
+    @torch.no_grad()
+    def encode_with_pretrained(self, x):
+        c = self.pretrained_model.encode(x)
+        if isinstance(c, DiagonalGaussianDistribution):
+            c = c.mode()
+        return c
+
+    def forward(self, x):
+        z_fs = self.encode_with_pretrained(x)
+        z = self.proj_norm(z_fs)
+        z = self.proj(z)
+        z = nonlinearity(z)
+
+        for submodel, downmodel in zip(self.model, self.downsampler):
+            z = submodel(z, temb=None)
+            z = downmodel(z)
+
+        if self.do_reshape:
+            z = rearrange(z, 'b c h w -> b (h w) c')
+        return z
diff --git a/lidm/modules/diffusion/openaimodel.py b/lidm/modules/diffusion/openaimodel.py
new file mode 100644
index 0000000000000000000000000000000000000000..d21458a9cf84e6e0a797b408d14e3266eeadd704
--- /dev/null
+++ b/lidm/modules/diffusion/openaimodel.py
@@ -0,0 +1,971 @@
+from abc import abstractmethod
+import math
+
+import numpy as np
+import torch as th
+import torch.nn as nn
+import torch.nn.functional as F
+
+from ..basic import (
+    checkpoint,
+    conv_nd,
+    linear,
+    avg_pool_nd,
+    zero_module,
+    normalization,
+    timestep_embedding,
+)
+from ...modules.attention import SpatialTransformer
+
+
+# dummy replace
+def convert_module_to_f16(x):
+    pass
+
+
+def convert_module_to_f32(x):
+    pass
+
+
+## go
+class AttentionPool2d(nn.Module):
+    """
+    Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
+    """
+
+    def __init__(
+            self,
+            spacial_dim: int,
+            embed_dim: int,
+            num_heads_channels: int,
+            output_dim: int = None,
+    ):
+        super().__init__()
+        self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
+        self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
+        self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
+        self.num_heads = embed_dim // num_heads_channels
+        self.attention = QKVAttention(self.num_heads)
+
+    def forward(self, x):
+        b, c, *_spatial = x.shape
+        x = x.reshape(b, c, -1)  # NC(HW)
+        x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
+        x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
+        x = self.qkv_proj(x)
+        x = self.attention(x)
+        x = self.c_proj(x)
+        return x[:, :, 0]
+
+
+class TimestepBlock(nn.Module):
+    """
+    Any module where forward() takes timestep embeddings as a second argument.
+    """
+
+    @abstractmethod
+    def forward(self, x, emb):
+        """
+        Apply the module to `x` given `emb` timestep embeddings.
+        """
+
+
+class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
+    """
+    A sequential module that passes timestep embeddings to the children that
+    support it as an extra input.
+    """
+
+    def forward(self, x, emb, context=None):
+        for layer in self:
+            if isinstance(layer, TimestepBlock):
+                x = layer(x, emb)
+            elif isinstance(layer, SpatialTransformer):
+                x = layer(x, context)
+            else:
+                x = layer(x)
+        return x
+
+
+class Upsample(nn.Module):
+    """
+    An upsampling layer with an optional convolution.
+    :param channels: channels in the inputs and outputs.
+    :param use_conv: a bool determining if a convolution is applied.
+    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+                 upsampling occurs in the inner-two dimensions.
+    """
+
+    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, cconv=False):
+        super().__init__()
+        self.channels = channels
+        self.out_channels = out_channels or channels
+        self.use_conv = use_conv
+        self.dims = dims
+        if use_conv:
+            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding, cconv=cconv)
+
+    def forward(self, x):
+        assert x.shape[1] == self.channels
+        if self.dims == 3:
+            x = F.interpolate(
+                x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
+            )
+        else:
+            x = F.interpolate(x, scale_factor=2, mode="nearest")
+        if self.use_conv:
+            x = self.conv(x)
+        return x
+
+
+class TransposedUpsample(nn.Module):
+    'Learned 2x upsampling without padding'
+
+    def __init__(self, channels, out_channels=None, ks=5):
+        super().__init__()
+        self.channels = channels
+        self.out_channels = out_channels or channels
+
+        self.up = nn.ConvTranspose2d(self.channels, self.out_channels, kernel_size=ks, stride=2)
+
+    def forward(self, x):
+        return self.up(x)
+
+
+class Downsample(nn.Module):
+    """
+    A downsampling layer with an optional convolution.
+    :param channels: channels in the inputs and outputs.
+    :param use_conv: a bool determining if a convolution is applied.
+    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
+                 downsampling occurs in the inner-two dimensions.
+    """
+
+    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1, cconv=False):
+        super().__init__()
+        self.channels = channels
+        self.out_channels = out_channels or channels
+        self.use_conv = use_conv
+        self.dims = dims
+        stride = 2 if dims != 3 else (1, 2, 2)
+        if use_conv:
+            self.op = conv_nd(
+                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, cconv=cconv
+            )
+        else:
+            assert self.channels == self.out_channels
+            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
+
+    def forward(self, x):
+        assert x.shape[1] == self.channels
+        return self.op(x)
+
+
+class ResBlock(TimestepBlock):
+    """
+    A residual block that can optionally change the number of channels.
+    :param channels: the number of input channels.
+    :param emb_channels: the number of timestep embedding channels.
+    :param dropout: the rate of dropout.
+    :param out_channels: if specified, the number of out channels.
+    :param use_conv: if True and out_channels is specified, use a spatial
+        convolution instead of a smaller 1x1 convolution to change the
+        channels in the skip connection.
+    :param dims: determines if the signal is 1D, 2D, or 3D.
+    :param use_checkpoint: if True, use gradient checkpointing on this module.
+    :param up: if True, use this block for upsampling.
+    :param down: if True, use this block for downsampling.
+    """
+
+    def __init__(
+            self,
+            channels,
+            emb_channels,
+            dropout,
+            out_channels=None,
+            use_conv=False,
+            use_scale_shift_norm=False,
+            dims=2,
+            use_checkpoint=False,
+            up=False,
+            down=False,
+            cconv=False
+    ):
+        super().__init__()
+        self.channels = channels
+        self.emb_channels = emb_channels
+        self.dropout = dropout
+        self.out_channels = out_channels or channels
+        self.use_conv = use_conv
+        self.use_checkpoint = use_checkpoint
+        self.use_scale_shift_norm = use_scale_shift_norm
+
+        self.in_layers = nn.Sequential(
+            normalization(channels),
+            nn.SiLU(),
+            conv_nd(dims, channels, self.out_channels, 3, padding=1, cconv=cconv),
+        )
+
+        self.updown = up or down
+
+        if up:
+            self.h_upd = Upsample(channels, False, dims, cconv=cconv)
+            self.x_upd = Upsample(channels, False, dims, cconv=cconv)
+        elif down:
+            self.h_upd = Downsample(channels, False, dims, cconv=cconv)
+            self.x_upd = Downsample(channels, False, dims, cconv=cconv)
+        else:
+            self.h_upd = self.x_upd = nn.Identity()
+
+        self.emb_layers = nn.Sequential(
+            nn.SiLU(),
+            linear(
+                emb_channels,
+                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
+            ),
+        )
+        self.out_layers = nn.Sequential(
+            normalization(self.out_channels),
+            nn.SiLU(),
+            nn.Dropout(p=dropout),
+            zero_module(
+                conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1, cconv=cconv)
+            ),
+        )
+
+        if self.out_channels == channels:
+            self.skip_connection = nn.Identity()
+        elif use_conv:
+            self.skip_connection = conv_nd(
+                dims, channels, self.out_channels, 3, padding=1, cconv=cconv
+            )
+        else:
+            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1, cconv=cconv)
+
+    def forward(self, x, emb):
+        """
+        Apply the block to a Tensor, conditioned on a timestep embedding.
+        :param x: an [N x C x ...] Tensor of features.
+        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
+        :return: an [N x C x ...] Tensor of outputs.
+        """
+        return checkpoint(
+            self._forward, (x, emb), self.parameters(), self.use_checkpoint
+        )
+
+    def _forward(self, x, emb):
+        if self.updown:
+            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
+            h = in_rest(x)
+            h = self.h_upd(h)
+            x = self.x_upd(x)
+            h = in_conv(h)
+        else:
+            h = self.in_layers(x)
+        emb_out = self.emb_layers(emb).type(h.dtype)
+        while len(emb_out.shape) < len(h.shape):
+            emb_out = emb_out[..., None]
+        if self.use_scale_shift_norm:
+            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
+            scale, shift = th.chunk(emb_out, 2, dim=1)
+            h = out_norm(h) * (1 + scale) + shift
+            h = out_rest(h)
+        else:
+            h = h + emb_out
+            h = self.out_layers(h)
+        return self.skip_connection(x) + h
+
+
+class AttentionBlock(nn.Module):
+    """
+    An attention block that allows spatial positions to attend to each other.
+    Originally ported from here, but adapted to the N-d case.
+    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
+    """
+
+    def __init__(
+            self,
+            channels,
+            num_heads=1,
+            num_head_channels=-1,
+            use_checkpoint=False,
+            use_new_attention_order=False,
+    ):
+        super().__init__()
+        self.channels = channels
+        if num_head_channels == -1:
+            self.num_heads = num_heads
+        else:
+            assert (
+                    channels % num_head_channels == 0
+            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
+            self.num_heads = channels // num_head_channels
+        self.use_checkpoint = use_checkpoint
+        self.norm = normalization(channels)
+        self.qkv = conv_nd(1, channels, channels * 3, 1)
+        if use_new_attention_order:
+            # split qkv before split heads
+            self.attention = QKVAttention(self.num_heads)
+        else:
+            # split heads before split qkv
+            self.attention = QKVAttentionLegacy(self.num_heads)
+
+        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
+
+    def forward(self, x):
+        return checkpoint(self._forward, (x,), self.parameters(),
+                          True)  # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
+        # return pt_checkpoint(self._forward, x)  # pytorch
+
+    def _forward(self, x):
+        b, c, *spatial = x.shape
+        x = x.reshape(b, c, -1)
+        qkv = self.qkv(self.norm(x))
+        h = self.attention(qkv)
+        h = self.proj_out(h)
+        return (x + h).reshape(b, c, *spatial)
+
+
+def count_flops_attn(model, _x, y):
+    """
+    A counter for the `thop` package to count the operations in an
+    attention operation.
+    Meant to be used like:
+        macs, params = thop.profile(
+            model,
+            inputs=(inputs, timestamps),
+            custom_ops={QKVAttention: QKVAttention.count_flops},
+        )
+    """
+    b, c, *spatial = y[0].shape
+    num_spatial = int(np.prod(spatial))
+    # We perform two matmuls with the same number of ops.
+    # The first computes the weight matrix, the second computes
+    # the combination of the value vectors.
+    matmul_ops = 2 * b * (num_spatial ** 2) * c
+    model.total_ops += th.DoubleTensor([matmul_ops])
+
+
+class QKVAttentionLegacy(nn.Module):
+    """
+    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
+    """
+
+    def __init__(self, n_heads):
+        super().__init__()
+        self.n_heads = n_heads
+
+    def forward(self, qkv):
+        """
+        Apply QKV attention.
+        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
+        :return: an [N x (H * C) x T] tensor after attention.
+        """
+        bs, width, length = qkv.shape
+        assert width % (3 * self.n_heads) == 0
+        ch = width // (3 * self.n_heads)
+        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
+        scale = 1 / math.sqrt(math.sqrt(ch))
+        weight = th.einsum(
+            "bct,bcs->bts", q * scale, k * scale
+        )  # More stable with f16 than dividing afterwards
+        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+        a = th.einsum("bts,bcs->bct", weight, v)
+        return a.reshape(bs, -1, length)
+
+    @staticmethod
+    def count_flops(model, _x, y):
+        return count_flops_attn(model, _x, y)
+
+
+class QKVAttention(nn.Module):
+    """
+    A module which performs QKV attention and splits in a different order.
+    """
+
+    def __init__(self, n_heads):
+        super().__init__()
+        self.n_heads = n_heads
+
+    def forward(self, qkv):
+        """
+        Apply QKV attention.
+        :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
+        :return: an [N x (H * C) x T] tensor after attention.
+        """
+        bs, width, length = qkv.shape
+        assert width % (3 * self.n_heads) == 0
+        ch = width // (3 * self.n_heads)
+        q, k, v = qkv.chunk(3, dim=1)
+        scale = 1 / math.sqrt(math.sqrt(ch))
+        weight = th.einsum(
+            "bct,bcs->bts",
+            (q * scale).view(bs * self.n_heads, ch, length),
+            (k * scale).view(bs * self.n_heads, ch, length),
+        )  # More stable with f16 than dividing afterwards
+        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
+        a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
+        return a.reshape(bs, -1, length)
+
+    @staticmethod
+    def count_flops(model, _x, y):
+        return count_flops_attn(model, _x, y)
+
+
+class UNetModel(nn.Module):
+    """
+    The full UNet model with attention and timestep embedding.
+    :param in_channels: channels in the input Tensor.
+    :param model_channels: base channel count for the model.
+    :param out_channels: channels in the output Tensor.
+    :param num_res_blocks: number of residual blocks per downsample.
+    :param attention_resolutions: a collection of downsample rates at which
+        attention will take place. May be a set, list, or tuple.
+        For example, if this contains 4, then at 4x downsampling, attention
+        will be used.
+    :param dropout: the dropout probability.
+    :param channel_mult: channel multiplier for each level of the UNet.
+    :param conv_resample: if True, use learned convolutions for upsampling and
+        downsampling.
+    :param dims: determines if the signal is 1D, 2D, or 3D.
+    :param num_classes: if specified (as an int), then this model will be
+        class-conditional with `num_classes` classes.
+    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
+    :param num_heads: the number of attention heads in each attention layer.
+    :param num_heads_channels: if specified, ignore num_heads and instead use
+                               a fixed channel width per attention head.
+    :param num_heads_upsample: works with num_heads to set a different number
+                               of heads for upsampling. Deprecated.
+    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
+    :param resblock_updown: use residual blocks for up/downsampling.
+    :param use_new_attention_order: use a different attention pattern for potentially
+                                    increased efficiency.
+    """
+
+    def __init__(
+            self,
+            image_size,
+            in_channels,
+            model_channels,
+            out_channels,
+            num_res_blocks,
+            attention_resolutions,
+            dropout=0,
+            channel_mult=(1, 2, 4, 8),
+            conv_resample=True,
+            dims=2,
+            num_classes=None,
+            use_checkpoint=False,
+            use_fp16=False,
+            num_heads=-1,
+            num_head_channels=-1,
+            num_heads_upsample=-1,
+            use_scale_shift_norm=False,
+            resblock_updown=False,
+            use_new_attention_order=False,
+            use_spatial_transformer=False,  # custom transformer support
+            transformer_depth=1,  # custom transformer support
+            context_dim=None,  # custom transformer support
+            n_embed=None,  # custom support for prediction of discrete ids into codebook of first stage vq model
+            legacy=True,
+            lib_name='ldm'
+    ):
+        super().__init__()
+        if use_spatial_transformer:
+            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
+        if context_dim is not None:
+            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
+            from omegaconf.listconfig import ListConfig
+            if type(context_dim) == ListConfig:
+                context_dim = list(context_dim)
+
+        if num_heads_upsample == -1:
+            num_heads_upsample = num_heads
+
+        if num_heads == -1:
+            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
+
+        if num_head_channels == -1:
+            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
+
+        self.image_size = image_size
+        self.in_channels = in_channels
+        self.model_channels = model_channels
+        self.out_channels = out_channels
+        self.num_res_blocks = num_res_blocks
+        self.attention_resolutions = attention_resolutions
+        self.dropout = dropout
+        self.channel_mult = channel_mult
+        self.conv_resample = conv_resample
+        self.num_classes = num_classes
+        self.use_checkpoint = use_checkpoint
+        self.dtype = th.float16 if use_fp16 else th.float32
+        self.num_heads = num_heads
+        self.num_head_channels = num_head_channels
+        self.num_heads_upsample = num_heads_upsample
+        self.predict_codebook_ids = n_embed is not None
+        self.cconv = lib_name in ['lidm', 'lidm_v0']
+
+        time_embed_dim = model_channels * 4
+        self.time_embed = nn.Sequential(
+            linear(model_channels, time_embed_dim),
+            nn.SiLU(),
+            linear(time_embed_dim, time_embed_dim),
+        )
+
+        if self.num_classes is not None:
+            self.label_emb = nn.Embedding(num_classes, time_embed_dim)
+
+        self.input_blocks = nn.ModuleList(
+            [
+                TimestepEmbedSequential(
+                    conv_nd(dims, in_channels, model_channels, 3, padding=1, cconv=self.cconv)
+                )
+            ]
+        )
+        self._feature_size = model_channels
+        input_block_chans = [model_channels]
+        ch = model_channels
+        ds = 1
+        for level, mult in enumerate(channel_mult):
+            for _ in range(num_res_blocks):
+                layers = [
+                    ResBlock(
+                        ch,
+                        time_embed_dim,
+                        dropout,
+                        out_channels=mult * model_channels,
+                        dims=dims,
+                        use_checkpoint=use_checkpoint,
+                        use_scale_shift_norm=use_scale_shift_norm,
+                        cconv=self.cconv
+                    )
+                ]
+                ch = mult * model_channels
+                if ds in attention_resolutions:
+                    if num_head_channels == -1:
+                        dim_head = ch // num_heads
+                    else:
+                        num_heads = ch // num_head_channels
+                        dim_head = num_head_channels
+                    if legacy:
+                        # num_heads = 1
+                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+                    layers.append(
+                        AttentionBlock(
+                            ch,
+                            use_checkpoint=use_checkpoint,
+                            num_heads=num_heads,
+                            num_head_channels=dim_head,
+                            use_new_attention_order=use_new_attention_order,
+                        ) if not use_spatial_transformer else SpatialTransformer(
+                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
+                        )
+                    )
+                self.input_blocks.append(TimestepEmbedSequential(*layers))
+                self._feature_size += ch
+                input_block_chans.append(ch)
+            if level != len(channel_mult) - 1:
+                out_ch = ch
+                self.input_blocks.append(
+                    TimestepEmbedSequential(
+                        ResBlock(
+                            ch,
+                            time_embed_dim,
+                            dropout,
+                            out_channels=out_ch,
+                            dims=dims,
+                            use_checkpoint=use_checkpoint,
+                            use_scale_shift_norm=use_scale_shift_norm,
+                            down=True,
+                            cconv=self.cconv
+                        )
+                        if resblock_updown
+                        else Downsample(
+                            ch, conv_resample, dims=dims, out_channels=out_ch, cconv=self.cconv
+                        )
+                    )
+                )
+                ch = out_ch
+                input_block_chans.append(ch)
+                ds *= 2
+                self._feature_size += ch
+
+        if num_head_channels == -1:
+            dim_head = ch // num_heads
+        else:
+            num_heads = ch // num_head_channels
+            dim_head = num_head_channels
+        if legacy:
+            # num_heads = 1
+            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+        self.middle_block = TimestepEmbedSequential(
+            ResBlock(
+                ch,
+                time_embed_dim,
+                dropout,
+                dims=dims,
+                use_checkpoint=use_checkpoint,
+                use_scale_shift_norm=use_scale_shift_norm,
+                cconv=self.cconv
+            ),
+            AttentionBlock(
+                ch,
+                use_checkpoint=use_checkpoint,
+                num_heads=num_heads,
+                num_head_channels=dim_head,
+                use_new_attention_order=use_new_attention_order,
+            ) if not use_spatial_transformer else SpatialTransformer(
+                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
+            ),
+            ResBlock(
+                ch,
+                time_embed_dim,
+                dropout,
+                dims=dims,
+                use_checkpoint=use_checkpoint,
+                use_scale_shift_norm=use_scale_shift_norm,
+                cconv=self.cconv
+            ),
+        )
+        self._feature_size += ch
+
+        self.output_blocks = nn.ModuleList([])
+        for level, mult in list(enumerate(channel_mult))[::-1]:
+            for i in range(num_res_blocks + 1):
+                ich = input_block_chans.pop()
+                layers = [
+                    ResBlock(
+                        ch + ich,
+                        time_embed_dim,
+                        dropout,
+                        out_channels=model_channels * mult,
+                        dims=dims,
+                        use_checkpoint=use_checkpoint,
+                        use_scale_shift_norm=use_scale_shift_norm,
+                        cconv=self.cconv
+                    )
+                ]
+                ch = model_channels * mult
+                if ds in attention_resolutions:
+                    if num_head_channels == -1:
+                        dim_head = ch // num_heads
+                    else:
+                        num_heads = ch // num_head_channels
+                        dim_head = num_head_channels
+                    if legacy:
+                        # num_heads = 1
+                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
+                    layers.append(
+                        AttentionBlock(
+                            ch,
+                            use_checkpoint=use_checkpoint,
+                            num_heads=num_heads_upsample,
+                            num_head_channels=dim_head,
+                            use_new_attention_order=use_new_attention_order,
+                        ) if not use_spatial_transformer else SpatialTransformer(
+                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim
+                        )
+                    )
+                if level and i == num_res_blocks:
+                    out_ch = ch
+                    layers.append(
+                        ResBlock(
+                            ch,
+                            time_embed_dim,
+                            dropout,
+                            out_channels=out_ch,
+                            dims=dims,
+                            use_checkpoint=use_checkpoint,
+                            use_scale_shift_norm=use_scale_shift_norm,
+                            up=True,
+                            cconv=self.cconv
+                        )
+                        if resblock_updown
+                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch, cconv=self.cconv)
+                    )
+                    ds //= 2
+                self.output_blocks.append(TimestepEmbedSequential(*layers))
+                self._feature_size += ch
+
+        self.out = nn.Sequential(
+            normalization(ch),
+            nn.SiLU(),
+            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1, cconv=self.cconv)),
+        )
+        if self.predict_codebook_ids:
+            self.id_predictor = nn.Sequential(
+                normalization(ch),
+                conv_nd(dims, model_channels, n_embed, 1, use_cconv=self.use_cconv),
+                # nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
+            )
+
+    def convert_to_fp16(self):
+        """
+        Convert the torso of the model to float16.
+        """
+        self.input_blocks.apply(convert_module_to_f16)
+        self.middle_block.apply(convert_module_to_f16)
+        self.output_blocks.apply(convert_module_to_f16)
+
+    def convert_to_fp32(self):
+        """
+        Convert the torso of the model to float32.
+        """
+        self.input_blocks.apply(convert_module_to_f32)
+        self.middle_block.apply(convert_module_to_f32)
+        self.output_blocks.apply(convert_module_to_f32)
+
+    def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
+        """
+        Apply the model to an input batch.
+        :param x: an [N x C x ...] Tensor of inputs.
+        :param timesteps: a 1-D batch of timesteps.
+        :param context: conditioning plugged in via crossattn
+        :param y: an [N] Tensor of labels, if class-conditional.
+        :return: an [N x C x ...] Tensor of outputs.
+        """
+        assert (y is not None) == (
+                self.num_classes is not None
+        ), "must specify y if and only if the model is class-conditional"
+        hs = []
+        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
+        emb = self.time_embed(t_emb)
+
+        if self.num_classes is not None:
+            assert y.shape == (x.shape[0],)
+            emb = emb + self.label_emb(y)
+
+        h = x.type(self.dtype)
+        for module in self.input_blocks:
+            h = module(h, emb, context)
+            hs.append(h)
+        h = self.middle_block(h, emb, context)
+        for module in self.output_blocks:
+            h = th.cat([h, hs.pop()], dim=1)
+            h = module(h, emb, context)
+        h = h.type(x.dtype)
+        if self.predict_codebook_ids:
+            return self.id_predictor(h)
+        else:
+            return self.out(h)
+
+
+class EncoderUNetModel(nn.Module):
+    """
+    The half UNet model with attention and timestep embedding.
+    For usage, see UNet.
+    """
+
+    def __init__(
+            self,
+            image_size,
+            in_channels,
+            model_channels,
+            out_channels,
+            num_res_blocks,
+            attention_resolutions,
+            dropout=0,
+            channel_mult=(1, 2, 4, 8),
+            conv_resample=True,
+            dims=2,
+            use_checkpoint=False,
+            use_fp16=False,
+            num_heads=1,
+            num_head_channels=-1,
+            num_heads_upsample=-1,
+            use_scale_shift_norm=False,
+            resblock_updown=False,
+            use_new_attention_order=False,
+            pool="adaptive",
+            lib_name='ldm',
+            *args,
+            **kwargs
+    ):
+        super().__init__()
+
+        if num_heads_upsample == -1:
+            num_heads_upsample = num_heads
+
+        self.in_channels = in_channels
+        self.model_channels = model_channels
+        self.out_channels = out_channels
+        self.num_res_blocks = num_res_blocks
+        self.attention_resolutions = attention_resolutions
+        self.dropout = dropout
+        self.channel_mult = channel_mult
+        self.conv_resample = conv_resample
+        self.use_checkpoint = use_checkpoint
+        self.dtype = th.float16 if use_fp16 else th.float32
+        self.num_heads = num_heads
+        self.num_head_channels = num_head_channels
+        self.num_heads_upsample = num_heads_upsample
+        self.cconv = lib_name == 'lidm'
+
+        time_embed_dim = model_channels * 4
+        self.time_embed = nn.Sequential(
+            linear(model_channels, time_embed_dim),
+            nn.SiLU(),
+            linear(time_embed_dim, time_embed_dim),
+        )
+
+        self.input_blocks = nn.ModuleList(
+            [
+                TimestepEmbedSequential(
+                    conv_nd(dims, in_channels, model_channels, 3, padding=1, cconv=self.cconv)
+                )
+            ]
+        )
+        self._feature_size = model_channels
+        input_block_chans = [model_channels]
+        ch = model_channels
+        ds = 1
+        for level, mult in enumerate(channel_mult):
+            for _ in range(num_res_blocks):
+                layers = [
+                    ResBlock(
+                        ch,
+                        time_embed_dim,
+                        dropout,
+                        out_channels=mult * model_channels,
+                        dims=dims,
+                        use_checkpoint=use_checkpoint,
+                        use_scale_shift_norm=use_scale_shift_norm,
+                    )
+                ]
+                ch = mult * model_channels
+                if ds in attention_resolutions:
+                    layers.append(
+                        AttentionBlock(
+                            ch,
+                            use_checkpoint=use_checkpoint,
+                            num_heads=num_heads,
+                            num_head_channels=num_head_channels,
+                            use_new_attention_order=use_new_attention_order,
+                        )
+                    )
+                self.input_blocks.append(TimestepEmbedSequential(*layers))
+                self._feature_size += ch
+                input_block_chans.append(ch)
+            if level != len(channel_mult) - 1:
+                out_ch = ch
+                self.input_blocks.append(
+                    TimestepEmbedSequential(
+                        ResBlock(
+                            ch,
+                            time_embed_dim,
+                            dropout,
+                            out_channels=out_ch,
+                            dims=dims,
+                            use_checkpoint=use_checkpoint,
+                            use_scale_shift_norm=use_scale_shift_norm,
+                            down=True,
+                        )
+                        if resblock_updown
+                        else Downsample(
+                            ch, conv_resample, dims=dims, out_channels=out_ch
+                        )
+                    )
+                )
+                ch = out_ch
+                input_block_chans.append(ch)
+                ds *= 2
+                self._feature_size += ch
+
+        self.middle_block = TimestepEmbedSequential(
+            ResBlock(
+                ch,
+                time_embed_dim,
+                dropout,
+                dims=dims,
+                use_checkpoint=use_checkpoint,
+                use_scale_shift_norm=use_scale_shift_norm,
+            ),
+            AttentionBlock(
+                ch,
+                use_checkpoint=use_checkpoint,
+                num_heads=num_heads,
+                num_head_channels=num_head_channels,
+                use_new_attention_order=use_new_attention_order,
+            ),
+            ResBlock(
+                ch,
+                time_embed_dim,
+                dropout,
+                dims=dims,
+                use_checkpoint=use_checkpoint,
+                use_scale_shift_norm=use_scale_shift_norm,
+            ),
+        )
+        self._feature_size += ch
+        self.pool = pool
+        if pool == "adaptive":
+            self.out = nn.Sequential(
+                normalization(ch),
+                nn.SiLU(),
+                nn.AdaptiveAvgPool2d((1, 1)),
+                zero_module(conv_nd(dims, ch, out_channels, 1)),
+                nn.Flatten(),
+            )
+        elif pool == "attention":
+            assert num_head_channels != -1
+            self.out = nn.Sequential(
+                normalization(ch),
+                nn.SiLU(),
+                AttentionPool2d(
+                    (image_size // ds), ch, num_head_channels, out_channels
+                ),
+            )
+        elif pool == "spatial":
+            self.out = nn.Sequential(
+                nn.Linear(self._feature_size, 2048),
+                nn.ReLU(),
+                nn.Linear(2048, self.out_channels),
+            )
+        elif pool == "spatial_v2":
+            self.out = nn.Sequential(
+                nn.Linear(self._feature_size, 2048),
+                normalization(2048),
+                nn.SiLU(),
+                nn.Linear(2048, self.out_channels),
+            )
+        else:
+            raise NotImplementedError(f"Unexpected {pool} pooling")
+
+    def convert_to_fp16(self):
+        """
+        Convert the torso of the model to float16.
+        """
+        self.input_blocks.apply(convert_module_to_f16)
+        self.middle_block.apply(convert_module_to_f16)
+
+    def convert_to_fp32(self):
+        """
+        Convert the torso of the model to float32.
+        """
+        self.input_blocks.apply(convert_module_to_f32)
+        self.middle_block.apply(convert_module_to_f32)
+
+    def forward(self, x, timesteps):
+        """
+        Apply the model to an input batch.
+        :param x: an [N x C x ...] Tensor of inputs.
+        :param timesteps: a 1-D batch of timesteps.
+        :return: an [N x K] Tensor of outputs.
+        """
+        emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
+
+        results = []
+        h = x.type(self.dtype)
+        for module in self.input_blocks:
+            h = module(h, emb)
+            if self.pool.startswith("spatial"):
+                results.append(h.type(x.dtype).mean(dim=(2, 3)))
+        h = self.middle_block(h, emb)
+        if self.pool.startswith("spatial"):
+            results.append(h.type(x.dtype).mean(dim=(2, 3)))
+            h = th.cat(results, axis=-1)
+            return self.out(h)
+        else:
+            h = h.type(x.dtype)
+            return self.out(h)
diff --git a/lidm/modules/distributions/__init__.py b/lidm/modules/distributions/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/modules/distributions/distributions.py b/lidm/modules/distributions/distributions.py
new file mode 100644
index 0000000000000000000000000000000000000000..f2b8ef901130efc171aa69742ca0244d94d3f2e9
--- /dev/null
+++ b/lidm/modules/distributions/distributions.py
@@ -0,0 +1,92 @@
+import torch
+import numpy as np
+
+
+class AbstractDistribution:
+    def sample(self):
+        raise NotImplementedError()
+
+    def mode(self):
+        raise NotImplementedError()
+
+
+class DiracDistribution(AbstractDistribution):
+    def __init__(self, value):
+        self.value = value
+
+    def sample(self):
+        return self.value
+
+    def mode(self):
+        return self.value
+
+
+class DiagonalGaussianDistribution(object):
+    def __init__(self, parameters, deterministic=False):
+        self.parameters = parameters
+        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
+        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
+        self.deterministic = deterministic
+        self.std = torch.exp(0.5 * self.logvar)
+        self.var = torch.exp(self.logvar)
+        if self.deterministic:
+            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
+
+    def sample(self):
+        x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
+        return x
+
+    def kl(self, other=None):
+        if self.deterministic:
+            return torch.Tensor([0.])
+        else:
+            if other is None:
+                return 0.5 * torch.sum(torch.pow(self.mean, 2)
+                                       + self.var - 1.0 - self.logvar,
+                                       dim=[1, 2, 3])
+            else:
+                return 0.5 * torch.sum(
+                    torch.pow(self.mean - other.mean, 2) / other.var
+                    + self.var / other.var - 1.0 - self.logvar + other.logvar,
+                    dim=[1, 2, 3])
+
+    def nll(self, sample, dims=[1,2,3]):
+        if self.deterministic:
+            return torch.Tensor([0.])
+        logtwopi = np.log(2.0 * np.pi)
+        return 0.5 * torch.sum(
+            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
+            dim=dims)
+
+    def mode(self):
+        return self.mean
+
+
+def normal_kl(mean1, logvar1, mean2, logvar2):
+    """
+    source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
+    Compute the KL divergence between two gaussians.
+    Shapes are automatically broadcasted, so batches can be compared to
+    scalars, among other use cases.
+    """
+    tensor = None
+    for obj in (mean1, logvar1, mean2, logvar2):
+        if isinstance(obj, torch.Tensor):
+            tensor = obj
+            break
+    assert tensor is not None, "at least one argument must be a Tensor"
+
+    # Force variances to be Tensors. Broadcasting helps convert scalars to
+    # Tensors, but it does not work for torch.exp().
+    logvar1, logvar2 = [
+        x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
+        for x in (logvar1, logvar2)
+    ]
+
+    return 0.5 * (
+        -1.0
+        + logvar2
+        - logvar1
+        + torch.exp(logvar1 - logvar2)
+        + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
+    )
diff --git a/lidm/modules/ema.py b/lidm/modules/ema.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea6d1d3594bb6336ed896557cf33275ea94380d3
--- /dev/null
+++ b/lidm/modules/ema.py
@@ -0,0 +1,76 @@
+import torch
+from torch import nn
+
+
+class LitEma(nn.Module):
+    def __init__(self, model, decay=0.9999, use_num_upates=True):
+        super().__init__()
+        if decay < 0.0 or decay > 1.0:
+            raise ValueError('Decay must be between 0 and 1')
+
+        self.m_name2s_name = {}
+        self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
+        self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
+        else torch.tensor(-1, dtype=torch.int))
+
+        for name, p in model.named_parameters():
+            if p.requires_grad:
+                # remove as '.'-character is not allowed in buffers
+                s_name = name.replace('.', '')
+                self.m_name2s_name.update({name: s_name})
+                self.register_buffer(s_name, p.clone().detach().data)
+
+        self.collected_params = []
+
+    def forward(self, model):
+        decay = self.decay
+
+        if self.num_updates >= 0:
+            self.num_updates += 1
+            decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
+
+        one_minus_decay = 1.0 - decay
+
+        with torch.no_grad():
+            m_param = dict(model.named_parameters())
+            shadow_params = dict(self.named_buffers())
+
+            for key in m_param:
+                if m_param[key].requires_grad:
+                    sname = self.m_name2s_name[key]
+                    shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
+                    shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
+                else:
+                    assert not key in self.m_name2s_name
+
+    def copy_to(self, model):
+        m_param = dict(model.named_parameters())
+        shadow_params = dict(self.named_buffers())
+        for key in m_param:
+            if m_param[key].requires_grad:
+                m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
+            else:
+                assert not key in self.m_name2s_name
+
+    def store(self, parameters):
+        """
+        Save the current parameters for restoring later.
+        Args:
+          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+            temporarily stored.
+        """
+        self.collected_params = [param.clone() for param in parameters]
+
+    def restore(self, parameters):
+        """
+        Restore the parameters stored with the `store` method.
+        Useful to validate the model with EMA parameters without affecting the
+        original optimization process. Store the parameters before the
+        `copy_to` method. After validation (or model saving), use this to
+        restore the former parameters.
+        Args:
+          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
+            updated with the stored parameters.
+        """
+        for c_param, param in zip(self.collected_params, parameters):
+            param.data.copy_(c_param.data)
diff --git a/lidm/modules/encoders/__init__.py b/lidm/modules/encoders/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/modules/encoders/modules.py b/lidm/modules/encoders/modules.py
new file mode 100644
index 0000000000000000000000000000000000000000..fb37ae10aec342c6ff03fc1ecc979588dd92aa0a
--- /dev/null
+++ b/lidm/modules/encoders/modules.py
@@ -0,0 +1,327 @@
+import torch
+import torch.nn as nn
+from functools import partial
+import clip
+from einops import rearrange, repeat
+import kornia
+
+from ...modules.x_transformer import Encoder, TransformerWrapper
+
+
+class AbstractEncoder(nn.Module):
+    def __init__(self):
+        super().__init__()
+
+    def encode(self, *args, **kwargs):
+        raise NotImplementedError
+
+
+class ClassEmbedder(nn.Module):
+    def __init__(self, embed_dim, n_classes=1000, key='class'):
+        super().__init__()
+        self.key = key
+        self.embedding = nn.Embedding(n_classes, embed_dim)
+
+    def forward(self, batch, key=None):
+        if key is None:
+            key = self.key
+        # this is for use in crossattn
+        c = batch[key][:, None]
+        c = self.embedding(c)
+        return c
+
+
+class TransformerEmbedder(AbstractEncoder):
+    """Some transformer encoder layers"""
+
+    def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
+        super().__init__()
+        self.device = device
+        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+                                              attn_layers=Encoder(dim=n_embed, depth=n_layer))
+
+    def forward(self, tokens):
+        tokens = tokens.to(self.device)  # meh
+        z = self.transformer(tokens, return_embeddings=True)
+        return z
+
+    def encode(self, x):
+        return self(x)
+
+
+class BERTTokenizer(AbstractEncoder):
+    """ Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
+
+    def __init__(self, device="cuda", vq_interface=True, max_length=77):
+        super().__init__()
+        from transformers import BertTokenizerFast
+        # self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
+        self.tokenizer = BertTokenizerFast.from_pretrained('./models/bert')
+        self.device = device
+        self.vq_interface = vq_interface
+        self.max_length = max_length
+
+    def forward(self, text):
+        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
+                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
+        tokens = batch_encoding["input_ids"].to(self.device)
+        return tokens
+
+    @torch.no_grad()
+    def encode(self, text):
+        tokens = self(text)
+        if not self.vq_interface:
+            return tokens
+        return None, None, [None, None, tokens]
+
+    def decode(self, text):
+        return text
+
+
+class BERTEmbedder(AbstractEncoder):
+    """Uses the BERT tokenizr model and add some transformer encoder layers"""
+
+    def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
+                 device="cuda", use_tokenizer=True, embedding_dropout=0.0):
+        super().__init__()
+        self.use_tknz_fn = use_tokenizer
+        if self.use_tknz_fn:
+            self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
+        self.device = device
+        self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
+                                              attn_layers=Encoder(dim=n_embed, depth=n_layer),
+                                              emb_dropout=embedding_dropout)
+
+    def forward(self, text):
+        if self.use_tknz_fn:
+            tokens = self.tknz_fn(text)  # .to(self.device)
+        else:
+            tokens = text
+        z = self.transformer(tokens, return_embeddings=True)
+        return z
+
+    def encode(self, text):
+        # output of length 77
+        return self(text)
+
+
+class SpatialRescaler(nn.Module):
+    def __init__(self,
+                 strides=[],
+                 method='bilinear',
+                 in_channels=3,
+                 out_channels=None,
+                 bias=False):
+        super().__init__()
+        self.strides = strides
+        assert method in ['nearest', 'linear', 'bilinear', 'trilinear', 'bicubic', 'area']
+        self.interpolator = partial(torch.nn.functional.interpolate, mode=method, align_corners=True)
+        self.remap_output = out_channels is not None
+        if self.remap_output:
+            print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
+            self.channel_mapper = nn.Conv2d(in_channels, out_channels, 1, bias=bias)
+
+    def forward(self, x):
+        for h_s, w_s in self.strides:
+            x = self.interpolator(x, scale_factor=(1/h_s, 1/w_s))
+
+        if self.remap_output:
+            x = self.channel_mapper(x)
+        return x
+
+    def encode(self, x):
+        return self(x)
+
+
+class FrozenCLIPTextEmbedder(nn.Module):
+    """
+    Uses the CLIP transformer encoder for text.
+    """
+
+    def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
+        super().__init__()
+        self.model, _ = clip.load(version, jit=False, device="cpu")
+        self.model.to(device)
+        self.device = device
+        self.max_length = max_length
+        self.n_repeat = n_repeat
+        self.normalize = normalize
+
+    def freeze(self):
+        self.model = self.model.eval()
+        for param in self.parameters():
+            param.requires_grad = False
+
+    def forward(self, text):
+        tokens = clip.tokenize(text).to(self.device)
+        z = self.model.encode_text(tokens)
+        if self.normalize:
+            z = z / torch.linalg.norm(z, dim=1, keepdim=True)
+        return z
+
+    def encode(self, text):
+        z = self(text)
+        if z.ndim == 2:
+            z = z[:, None, :]
+        z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
+        return z
+
+
+class FrozenClipMultiTextEmbedder(FrozenCLIPTextEmbedder):
+    def __init__(self, num_views=1, apply_all=False, **kwargs):
+        super().__init__(**kwargs)
+        self.num_views = num_views
+        self.apply_all = apply_all
+
+    def encode(self, text):
+        z = self(text)
+        if z.ndim == 2:
+            z = z[:, None, :]
+
+        if not self.apply_all:
+            new_z = torch.zeros(*z.shape[:2], z.shape[2] * self.num_views, device=z.device)
+            new_z[:, :, self.num_views // 2 * z.shape[2]: (self.num_views // 2 + 1) * z.shape[2]] = z
+        else:
+            new_z = repeat(z, 'b 1 d -> b 1 (d m)', m=self.num_views)
+
+        return new_z
+
+
+class FrozenClipImageEmbedder(nn.Module):
+    """
+    Uses the CLIP image encoder.
+    """
+
+    def __init__(
+            self,
+            model,
+            jit=False,
+            device='cuda' if torch.cuda.is_available() else 'cpu',
+            antialias=False,
+    ):
+        super().__init__()
+        self.model, _ = clip.load(name=model, device='cpu', jit=jit)
+        self.init()
+
+        self.antialias = antialias
+
+        self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+        self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+
+    def init(self):
+        for param in self.model.parameters():
+            param.requires_grad = False
+        self.model.eval()
+
+    def preprocess(self, x):
+        x = kornia.geometry.resize(x, (224, 224),
+                                   interpolation='bicubic', align_corners=True,
+                                   antialias=self.antialias)
+        # x = (x + 1.) / 2.
+
+        # renormalize according to clip
+        x = kornia.enhance.normalize(x, self.mean, self.std)
+        return x
+
+    def forward(self, x):
+        # x is assumed to be in range [0,1]
+        return self.model.encode_image(self.preprocess(x))
+
+
+class FrozenClipMultiImageEmbedder(FrozenClipImageEmbedder):
+    """
+    Uses the CLIP image encoder with multi-image as input.
+    """
+
+    def __init__(self, num_views=1, split_per_view=1, img_dim=768, out_dim=512, key='camera', **kwargs):
+        super().__init__(**kwargs)
+        self.split_per_view = split_per_view
+        self.key = key
+        self.linear = nn.Linear(img_dim, out_dim)
+        self.view_embedding = nn.Parameter(img_dim ** -0.5 * torch.randn((1, num_views * split_per_view, img_dim)))
+
+    def forward(self, x):
+        # x is assumed to be in range [0,1]
+        if isinstance(x, torch.Tensor) and x.ndim == 5:
+            x = x.permute(1, 0, 2, 3, 4)
+        elif isinstance(x, dict):
+            x = x[self.key]
+        elif isinstance(x, torch.Tensor) and x.ndim == 3:
+            x = self.linear(x)
+            return x
+
+        with torch.no_grad():
+            img_feats = [self.model.encode_image(self.preprocess(img))[:, None] for img in x]
+            x = torch.cat(img_feats, 1).float() + self.view_embedding
+            x = self.linear(x)
+
+        return x
+
+
+class FrozenClipImagePatchEmbedder(nn.Module):
+    """
+    Uses the CLIP image encoder.
+    """
+
+    def __init__(
+            self,
+            model,
+            jit=False,
+            device='cuda' if torch.cuda.is_available() else 'cpu',
+            antialias=False,
+            img_dim=1024,
+            out_dim=512,
+            num_views=1,
+            split_per_view=1
+    ):
+        super().__init__()
+        self.model, _ = clip.load(name=model, device='cpu', jit=jit)
+        self.init()
+
+        self.antialias = antialias
+
+        self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
+        self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
+        self.view_embedding = nn.Parameter(img_dim ** -0.5 * torch.randn((1, num_views * split_per_view, 1, img_dim)))
+
+        self.linear = nn.Linear(img_dim, out_dim)
+
+    def init(self):
+        for param in self.model.parameters():
+            param.requires_grad = False
+        self.model.eval()
+
+    def preprocess(self, x):
+        x = kornia.geometry.resize(x, (224, 224),
+                                   interpolation='bicubic', align_corners=True,
+                                   antialias=self.antialias)
+        # x = (x + 1.) / 2.
+
+        # renormalize according to clip
+        x = kornia.enhance.normalize(x, self.mean, self.std)
+        return x
+
+    def encode_image_patch(self, x):
+        visual_encoder = self.model.visual
+        x = x.type(self.model.dtype)
+        x = visual_encoder.conv1(x)  # shape = [*, width, grid, grid]
+        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
+        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
+        x = torch.cat([visual_encoder.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width]
+        x = x + visual_encoder.positional_embedding.to(x.dtype)
+        x = visual_encoder.ln_pre(x)
+
+        x = x.permute(1, 0, 2)  # NLD -> LND
+        x = visual_encoder.transformer(x)
+        x = x.permute(1, 0, 2)  # LND -> NLD
+        x = x[:, 1:, :]
+
+        return x
+
+    def forward(self, x):
+        # x is assumed to be in range [0,1]
+        img_feats = [self.encode_image_patch(self.preprocess(img))[:, None] for img in x]
+        x = torch.cat(img_feats, 1).float() + self.view_embedding
+        x = rearrange(x, 'b v n c -> b (v n) c')
+        x = self.linear(x)
+        return x
diff --git a/lidm/modules/image_degradation/__init__.py b/lidm/modules/image_degradation/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..0db8d3e862120b2c4587c6b904c0c1153ebcdf48
--- /dev/null
+++ b/lidm/modules/image_degradation/__init__.py
@@ -0,0 +1,2 @@
+from .bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
+from .bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
diff --git a/lidm/modules/image_degradation/bsrgan.py b/lidm/modules/image_degradation/bsrgan.py
new file mode 100644
index 0000000000000000000000000000000000000000..5b28874c1cc2aeb47f5f5d067397272401e59dd6
--- /dev/null
+++ b/lidm/modules/image_degradation/bsrgan.py
@@ -0,0 +1,730 @@
+# -*- coding: utf-8 -*-
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+from . import utils_image as util
+
+
+def modcrop_np(img, sf):
+    '''
+    Args:
+        img: numpy image, WxH or WxHxC
+        sf: scale factor
+    Return:
+        cropped image
+    '''
+    w, h = img.shape[:2]
+    im = np.copy(img)
+    return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+    """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+    k_size = k.shape[0]
+    # Calculate the big kernels size
+    big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+    # Loop over the small kernel to fill the big one
+    for r in range(k_size):
+        for c in range(k_size):
+            big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+    # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+    crop = k_size // 2
+    cropped_big_k = big_k[crop:-crop, crop:-crop]
+    # Normalize to 1
+    return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+    """ generate an anisotropic Gaussian kernel
+    Args:
+        ksize : e.g., 15, kernel size
+        theta : [0,  pi], rotation angle range
+        l1    : [0.1,50], scaling of eigenvalues
+        l2    : [0.1,l1], scaling of eigenvalues
+        If l1 = l2, will get an isotropic Gaussian kernel.
+    Returns:
+        k     : kernel
+    """
+
+    v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+    V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+    D = np.array([[l1, 0], [0, l2]])
+    Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+    k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+    return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+    center = size / 2.0 + 0.5
+    k = np.zeros([size, size])
+    for y in range(size):
+        for x in range(size):
+            cy = y - center + 1
+            cx = x - center + 1
+            k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+    k = k / np.sum(k)
+    return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+    """shift pixel for super-resolution with different scale factors
+    Args:
+        x: WxHxC or WxH
+        sf: scale factor
+        upper_left: shift direction
+    """
+    h, w = x.shape[:2]
+    shift = (sf - 1) * 0.5
+    xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+    if upper_left:
+        x1 = xv + shift
+        y1 = yv + shift
+    else:
+        x1 = xv - shift
+        y1 = yv - shift
+
+    x1 = np.clip(x1, 0, w - 1)
+    y1 = np.clip(y1, 0, h - 1)
+
+    if x.ndim == 2:
+        x = interp2d(xv, yv, x)(x1, y1)
+    if x.ndim == 3:
+        for i in range(x.shape[-1]):
+            x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+    return x
+
+
+def blur(x, k):
+    '''
+    x: image, NxcxHxW
+    k: kernel, Nx1xhxw
+    '''
+    n, c = x.shape[:2]
+    p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+    x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+    k = k.repeat(1, c, 1, 1)
+    k = k.view(-1, 1, k.shape[2], k.shape[3])
+    x = x.view(1, -1, x.shape[2], x.shape[3])
+    x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+    x = x.view(n, c, x.shape[2], x.shape[3])
+
+    return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+    """"
+    # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+    # Kai Zhang
+    # min_var = 0.175 * sf  # variance of the gaussian kernel will be sampled between min_var and max_var
+    # max_var = 2.5 * sf
+    """
+    # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+    lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+    lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+    theta = np.random.rand() * np.pi  # random theta
+    noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+    # Set COV matrix using Lambdas and Theta
+    LAMBDA = np.diag([lambda_1, lambda_2])
+    Q = np.array([[np.cos(theta), -np.sin(theta)],
+                  [np.sin(theta), np.cos(theta)]])
+    SIGMA = Q @ LAMBDA @ Q.T
+    INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+    # Set expectation position (shifting kernel for aligned image)
+    MU = k_size // 2 - 0.5 * (scale_factor - 1)  # - 0.5 * (scale_factor - k_size % 2)
+    MU = MU[None, None, :, None]
+
+    # Create meshgrid for Gaussian
+    [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+    Z = np.stack([X, Y], 2)[:, :, :, None]
+
+    # Calcualte Gaussian for every pixel of the kernel
+    ZZ = Z - MU
+    ZZ_t = ZZ.transpose(0, 1, 3, 2)
+    raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+    # shift the kernel so it will be centered
+    # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+    # Normalize the kernel and return
+    # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+    kernel = raw_kernel / np.sum(raw_kernel)
+    return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+    hsize = [hsize, hsize]
+    siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+    std = sigma
+    [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+    arg = -(x * x + y * y) / (2 * std * std)
+    h = np.exp(arg)
+    h[h < scipy.finfo(float).eps * h.max()] = 0
+    sumh = h.sum()
+    if sumh != 0:
+        h = h / sumh
+    return h
+
+
+def fspecial_laplacian(alpha):
+    alpha = max([0, min([alpha, 1])])
+    h1 = alpha / (alpha + 1)
+    h2 = (1 - alpha) / (alpha + 1)
+    h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+    h = np.array(h)
+    return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+    '''
+    python code from:
+    https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+    '''
+    if filter_type == 'gaussian':
+        return fspecial_gaussian(*args, **kwargs)
+    if filter_type == 'laplacian':
+        return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+    '''
+    Args:
+        x: HxWxC image, [0, 1]
+        sf: down-scale factor
+    Return:
+        bicubicly downsampled LR image
+    '''
+    x = util.imresize_np(x, scale=1 / sf)
+    return x
+
+
+def srmd_degradation(x, k, sf=3):
+    ''' blur + bicubic downsampling
+    Args:
+        x: HxWxC image, [0, 1]
+        k: hxw, double
+        sf: down-scale factor
+    Return:
+        downsampled LR image
+    Reference:
+        @inproceedings{zhang2018learning,
+          title={Learning a single convolutional super-resolution network for multiple degradations},
+          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+          pages={3262--3271},
+          year={2018}
+        }
+    '''
+    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')  # 'nearest' | 'mirror'
+    x = bicubic_degradation(x, sf=sf)
+    return x
+
+
+def dpsr_degradation(x, k, sf=3):
+    ''' bicubic downsampling + blur
+    Args:
+        x: HxWxC image, [0, 1]
+        k: hxw, double
+        sf: down-scale factor
+    Return:
+        downsampled LR image
+    Reference:
+        @inproceedings{zhang2019deep,
+          title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+          pages={1671--1681},
+          year={2019}
+        }
+    '''
+    x = bicubic_degradation(x, sf=sf)
+    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+    return x
+
+
+def classical_degradation(x, k, sf=3):
+    ''' blur + downsampling
+    Args:
+        x: HxWxC image, [0, 1]/[0, 255]
+        k: hxw, double
+        sf: down-scale factor
+    Return:
+        downsampled LR image
+    '''
+    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+    # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+    st = 0
+    return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+    """USM sharpening. borrowed from real-ESRGAN
+    Input image: I; Blurry image: B.
+    1. K = I + weight * (I - B)
+    2. Mask = 1 if abs(I - B) > threshold, else: 0
+    3. Blur mask:
+    4. Out = Mask * K + (1 - Mask) * I
+    Args:
+        img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+        weight (float): Sharp weight. Default: 1.
+        radius (float): Kernel size of Gaussian blur. Default: 50.
+        threshold (int):
+    """
+    if radius % 2 == 0:
+        radius += 1
+    blur = cv2.GaussianBlur(img, (radius, radius), 0)
+    residual = img - blur
+    mask = np.abs(residual) * 255 > threshold
+    mask = mask.astype('float32')
+    soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+    K = img + weight * residual
+    K = np.clip(K, 0, 1)
+    return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+    wd2 = 4.0 + sf
+    wd = 2.0 + 0.2 * sf
+    if random.random() < 0.5:
+        l1 = wd2 * random.random()
+        l2 = wd2 * random.random()
+        k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+    else:
+        k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
+    img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+    return img
+
+
+def add_resize(img, sf=4):
+    rnum = np.random.rand()
+    if rnum > 0.8:  # up
+        sf1 = random.uniform(1, 2)
+    elif rnum < 0.7:  # down
+        sf1 = random.uniform(0.5 / sf, 1)
+    else:
+        sf1 = 1.0
+    img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+    img = np.clip(img, 0.0, 1.0)
+
+    return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+#     noise_level = random.randint(noise_level1, noise_level2)
+#     rnum = np.random.rand()
+#     if rnum > 0.6:  # add color Gaussian noise
+#         img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+#     elif rnum < 0.4:  # add grayscale Gaussian noise
+#         img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+#     else:  # add  noise
+#         L = noise_level2 / 255.
+#         D = np.diag(np.random.rand(3))
+#         U = orth(np.random.rand(3, 3))
+#         conv = np.dot(np.dot(np.transpose(U), D), U)
+#         img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+#     img = np.clip(img, 0.0, 1.0)
+#     return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+    noise_level = random.randint(noise_level1, noise_level2)
+    rnum = np.random.rand()
+    if rnum > 0.6:  # add color Gaussian noise
+        img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+    elif rnum < 0.4:  # add grayscale Gaussian noise
+        img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+    else:  # add  noise
+        L = noise_level2 / 255.
+        D = np.diag(np.random.rand(3))
+        U = orth(np.random.rand(3, 3))
+        conv = np.dot(np.dot(np.transpose(U), D), U)
+        img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+    img = np.clip(img, 0.0, 1.0)
+    return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+    noise_level = random.randint(noise_level1, noise_level2)
+    img = np.clip(img, 0.0, 1.0)
+    rnum = random.random()
+    if rnum > 0.6:
+        img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+    elif rnum < 0.4:
+        img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+    else:
+        L = noise_level2 / 255.
+        D = np.diag(np.random.rand(3))
+        U = orth(np.random.rand(3, 3))
+        conv = np.dot(np.dot(np.transpose(U), D), U)
+        img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+    img = np.clip(img, 0.0, 1.0)
+    return img
+
+
+def add_Poisson_noise(img):
+    img = np.clip((img * 255.0).round(), 0, 255) / 255.
+    vals = 10 ** (2 * random.random() + 2.0)  # [2, 4]
+    if random.random() < 0.5:
+        img = np.random.poisson(img * vals).astype(np.float32) / vals
+    else:
+        img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+        img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+        noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+        img += noise_gray[:, :, np.newaxis]
+    img = np.clip(img, 0.0, 1.0)
+    return img
+
+
+def add_JPEG_noise(img):
+    quality_factor = random.randint(30, 95)
+    img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+    result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+    img = cv2.imdecode(encimg, 1)
+    img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+    return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+    h, w = lq.shape[:2]
+    rnd_h = random.randint(0, h - lq_patchsize)
+    rnd_w = random.randint(0, w - lq_patchsize)
+    lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+    rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+    hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+    return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+    """
+    This is the degradation model of BSRGAN from the paper
+    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+    ----------
+    img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+    sf: scale factor
+    isp_model: camera ISP model
+    Returns
+    -------
+    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+    """
+    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+    sf_ori = sf
+
+    h1, w1 = img.shape[:2]
+    img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
+    h, w = img.shape[:2]
+
+    if h < lq_patchsize * sf or w < lq_patchsize * sf:
+        raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+    hq = img.copy()
+
+    if sf == 4 and random.random() < scale2_prob:  # downsample1
+        if np.random.rand() < 0.5:
+            img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+                             interpolation=random.choice([1, 2, 3]))
+        else:
+            img = util.imresize_np(img, 1 / 2, True)
+        img = np.clip(img, 0.0, 1.0)
+        sf = 2
+
+    shuffle_order = random.sample(range(7), 7)
+    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+    if idx1 > idx2:  # keep downsample3 last
+        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+    for i in shuffle_order:
+
+        if i == 0:
+            img = add_blur(img, sf=sf)
+
+        elif i == 1:
+            img = add_blur(img, sf=sf)
+
+        elif i == 2:
+            a, b = img.shape[1], img.shape[0]
+            # downsample2
+            if random.random() < 0.75:
+                sf1 = random.uniform(1, 2 * sf)
+                img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+                                 interpolation=random.choice([1, 2, 3]))
+            else:
+                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+                k_shifted = shift_pixel(k, sf)
+                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
+                img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+                img = img[0::sf, 0::sf, ...]  # nearest downsampling
+            img = np.clip(img, 0.0, 1.0)
+
+        elif i == 3:
+            # downsample3
+            img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+            img = np.clip(img, 0.0, 1.0)
+
+        elif i == 4:
+            # add Gaussian noise
+            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+
+        elif i == 5:
+            # add JPEG noise
+            if random.random() < jpeg_prob:
+                img = add_JPEG_noise(img)
+
+        elif i == 6:
+            # add processed camera sensor noise
+            if random.random() < isp_prob and isp_model is not None:
+                with torch.no_grad():
+                    img, hq = isp_model.forward(img.copy(), hq)
+
+    # add final JPEG compression noise
+    img = add_JPEG_noise(img)
+
+    # random crop
+    img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+    return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+    """
+    This is the degradation model of BSRGAN from the paper
+    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+    ----------
+    sf: scale factor
+    isp_model: camera ISP model
+    Returns
+    -------
+    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+    """
+    image = util.uint2single(image)
+    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+    sf_ori = sf
+
+    h1, w1 = image.shape[:2]
+    image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
+    h, w = image.shape[:2]
+
+    hq = image.copy()
+
+    if sf == 4 and random.random() < scale2_prob:  # downsample1
+        if np.random.rand() < 0.5:
+            image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+                               interpolation=random.choice([1, 2, 3]))
+        else:
+            image = util.imresize_np(image, 1 / 2, True)
+        image = np.clip(image, 0.0, 1.0)
+        sf = 2
+
+    shuffle_order = random.sample(range(7), 7)
+    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+    if idx1 > idx2:  # keep downsample3 last
+        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+    for i in shuffle_order:
+
+        if i == 0:
+            image = add_blur(image, sf=sf)
+
+        elif i == 1:
+            image = add_blur(image, sf=sf)
+
+        elif i == 2:
+            a, b = image.shape[1], image.shape[0]
+            # downsample2
+            if random.random() < 0.75:
+                sf1 = random.uniform(1, 2 * sf)
+                image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+                                   interpolation=random.choice([1, 2, 3]))
+            else:
+                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+                k_shifted = shift_pixel(k, sf)
+                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
+                image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+                image = image[0::sf, 0::sf, ...]  # nearest downsampling
+            image = np.clip(image, 0.0, 1.0)
+
+        elif i == 3:
+            # downsample3
+            image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+            image = np.clip(image, 0.0, 1.0)
+
+        elif i == 4:
+            # add Gaussian noise
+            image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
+
+        elif i == 5:
+            # add JPEG noise
+            if random.random() < jpeg_prob:
+                image = add_JPEG_noise(image)
+
+        # elif i == 6:
+        #     # add processed camera sensor noise
+        #     if random.random() < isp_prob and isp_model is not None:
+        #         with torch.no_grad():
+        #             img, hq = isp_model.forward(img.copy(), hq)
+
+    # add final JPEG compression noise
+    image = add_JPEG_noise(image)
+    image = util.single2uint(image)
+    example = {"image":image}
+    return example
+
+
+# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
+def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
+    """
+    This is an extended degradation model by combining
+    the degradation models of BSRGAN and Real-ESRGAN
+    ----------
+    img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+    sf: scale factor
+    use_shuffle: the degradation shuffle
+    use_sharp: sharpening the img
+    Returns
+    -------
+    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+    """
+
+    h1, w1 = img.shape[:2]
+    img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
+    h, w = img.shape[:2]
+
+    if h < lq_patchsize * sf or w < lq_patchsize * sf:
+        raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+    if use_sharp:
+        img = add_sharpening(img)
+    hq = img.copy()
+
+    if random.random() < shuffle_prob:
+        shuffle_order = random.sample(range(13), 13)
+    else:
+        shuffle_order = list(range(13))
+        # local shuffle for noise, JPEG is always the last one
+        shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
+        shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
+
+    poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
+
+    for i in shuffle_order:
+        if i == 0:
+            img = add_blur(img, sf=sf)
+        elif i == 1:
+            img = add_resize(img, sf=sf)
+        elif i == 2:
+            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+        elif i == 3:
+            if random.random() < poisson_prob:
+                img = add_Poisson_noise(img)
+        elif i == 4:
+            if random.random() < speckle_prob:
+                img = add_speckle_noise(img)
+        elif i == 5:
+            if random.random() < isp_prob and isp_model is not None:
+                with torch.no_grad():
+                    img, hq = isp_model.forward(img.copy(), hq)
+        elif i == 6:
+            img = add_JPEG_noise(img)
+        elif i == 7:
+            img = add_blur(img, sf=sf)
+        elif i == 8:
+            img = add_resize(img, sf=sf)
+        elif i == 9:
+            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
+        elif i == 10:
+            if random.random() < poisson_prob:
+                img = add_Poisson_noise(img)
+        elif i == 11:
+            if random.random() < speckle_prob:
+                img = add_speckle_noise(img)
+        elif i == 12:
+            if random.random() < isp_prob and isp_model is not None:
+                with torch.no_grad():
+                    img, hq = isp_model.forward(img.copy(), hq)
+        else:
+            print('check the shuffle!')
+
+    # resize to desired size
+    img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
+                     interpolation=random.choice([1, 2, 3]))
+
+    # add final JPEG compression noise
+    img = add_JPEG_noise(img)
+
+    # random crop
+    img, hq = random_crop(img, hq, sf, lq_patchsize)
+
+    return img, hq
+
+
+if __name__ == '__main__':
+	print("hey")
+	img = util.imread_uint('utils/test.png', 3)
+	print(img)
+	img = util.uint2single(img)
+	print(img)
+	img = img[:448, :448]
+	h = img.shape[0] // 4
+	print("resizing to", h)
+	sf = 4
+	deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+	for i in range(20):
+		print(i)
+		img_lq = deg_fn(img)
+		print(img_lq)
+		img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
+		print(img_lq.shape)
+		print("bicubic", img_lq_bicubic.shape)
+		print(img_hq.shape)
+		lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+		                        interpolation=0)
+		lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+		                        interpolation=0)
+		img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+		util.imsave(img_concat, str(i) + '.png')
+
+
diff --git a/lidm/modules/image_degradation/bsrgan_light.py b/lidm/modules/image_degradation/bsrgan_light.py
new file mode 100644
index 0000000000000000000000000000000000000000..38f08a613ccbc6f18cd6c78f23919c222062a7cf
--- /dev/null
+++ b/lidm/modules/image_degradation/bsrgan_light.py
@@ -0,0 +1,650 @@
+# -*- coding: utf-8 -*-
+import numpy as np
+import cv2
+import torch
+
+from functools import partial
+import random
+from scipy import ndimage
+import scipy
+import scipy.stats as ss
+from scipy.interpolate import interp2d
+from scipy.linalg import orth
+import albumentations
+
+from . import utils_image as util
+
+"""
+# --------------------------------------------
+# Super-Resolution
+# --------------------------------------------
+#
+# Kai Zhang (cskaizhang@gmail.com)
+# https://github.com/cszn
+# From 2019/03--2021/08
+# --------------------------------------------
+"""
+
+
+def modcrop_np(img, sf):
+    '''
+    Args:
+        img: numpy image, WxH or WxHxC
+        sf: scale factor
+    Return:
+        cropped image
+    '''
+    w, h = img.shape[:2]
+    im = np.copy(img)
+    return im[:w - w % sf, :h - h % sf, ...]
+
+
+"""
+# --------------------------------------------
+# anisotropic Gaussian kernels
+# --------------------------------------------
+"""
+
+
+def analytic_kernel(k):
+    """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
+    k_size = k.shape[0]
+    # Calculate the big kernels size
+    big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
+    # Loop over the small kernel to fill the big one
+    for r in range(k_size):
+        for c in range(k_size):
+            big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
+    # Crop the edges of the big kernel to ignore very small values and increase run time of SR
+    crop = k_size // 2
+    cropped_big_k = big_k[crop:-crop, crop:-crop]
+    # Normalize to 1
+    return cropped_big_k / cropped_big_k.sum()
+
+
+def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
+    """ generate an anisotropic Gaussian kernel
+    Args:
+        ksize : e.g., 15, kernel size
+        theta : [0,  pi], rotation angle range
+        l1    : [0.1,50], scaling of eigenvalues
+        l2    : [0.1,l1], scaling of eigenvalues
+        If l1 = l2, will get an isotropic Gaussian kernel.
+    Returns:
+        k     : kernel
+    """
+
+    v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
+    V = np.array([[v[0], v[1]], [v[1], -v[0]]])
+    D = np.array([[l1, 0], [0, l2]])
+    Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
+    k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
+
+    return k
+
+
+def gm_blur_kernel(mean, cov, size=15):
+    center = size / 2.0 + 0.5
+    k = np.zeros([size, size])
+    for y in range(size):
+        for x in range(size):
+            cy = y - center + 1
+            cx = x - center + 1
+            k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
+
+    k = k / np.sum(k)
+    return k
+
+
+def shift_pixel(x, sf, upper_left=True):
+    """shift pixel for super-resolution with different scale factors
+    Args:
+        x: WxHxC or WxH
+        sf: scale factor
+        upper_left: shift direction
+    """
+    h, w = x.shape[:2]
+    shift = (sf - 1) * 0.5
+    xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
+    if upper_left:
+        x1 = xv + shift
+        y1 = yv + shift
+    else:
+        x1 = xv - shift
+        y1 = yv - shift
+
+    x1 = np.clip(x1, 0, w - 1)
+    y1 = np.clip(y1, 0, h - 1)
+
+    if x.ndim == 2:
+        x = interp2d(xv, yv, x)(x1, y1)
+    if x.ndim == 3:
+        for i in range(x.shape[-1]):
+            x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
+
+    return x
+
+
+def blur(x, k):
+    '''
+    x: image, NxcxHxW
+    k: kernel, Nx1xhxw
+    '''
+    n, c = x.shape[:2]
+    p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
+    x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
+    k = k.repeat(1, c, 1, 1)
+    k = k.view(-1, 1, k.shape[2], k.shape[3])
+    x = x.view(1, -1, x.shape[2], x.shape[3])
+    x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
+    x = x.view(n, c, x.shape[2], x.shape[3])
+
+    return x
+
+
+def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
+    """"
+    # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
+    # Kai Zhang
+    # min_var = 0.175 * sf  # variance of the gaussian kernel will be sampled between min_var and max_var
+    # max_var = 2.5 * sf
+    """
+    # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
+    lambda_1 = min_var + np.random.rand() * (max_var - min_var)
+    lambda_2 = min_var + np.random.rand() * (max_var - min_var)
+    theta = np.random.rand() * np.pi  # random theta
+    noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
+
+    # Set COV matrix using Lambdas and Theta
+    LAMBDA = np.diag([lambda_1, lambda_2])
+    Q = np.array([[np.cos(theta), -np.sin(theta)],
+                  [np.sin(theta), np.cos(theta)]])
+    SIGMA = Q @ LAMBDA @ Q.T
+    INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
+
+    # Set expectation position (shifting kernel for aligned image)
+    MU = k_size // 2 - 0.5 * (scale_factor - 1)  # - 0.5 * (scale_factor - k_size % 2)
+    MU = MU[None, None, :, None]
+
+    # Create meshgrid for Gaussian
+    [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
+    Z = np.stack([X, Y], 2)[:, :, :, None]
+
+    # Calcualte Gaussian for every pixel of the kernel
+    ZZ = Z - MU
+    ZZ_t = ZZ.transpose(0, 1, 3, 2)
+    raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
+
+    # shift the kernel so it will be centered
+    # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
+
+    # Normalize the kernel and return
+    # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
+    kernel = raw_kernel / np.sum(raw_kernel)
+    return kernel
+
+
+def fspecial_gaussian(hsize, sigma):
+    hsize = [hsize, hsize]
+    siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
+    std = sigma
+    [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
+    arg = -(x * x + y * y) / (2 * std * std)
+    h = np.exp(arg)
+    h[h < scipy.finfo(float).eps * h.max()] = 0
+    sumh = h.sum()
+    if sumh != 0:
+        h = h / sumh
+    return h
+
+
+def fspecial_laplacian(alpha):
+    alpha = max([0, min([alpha, 1])])
+    h1 = alpha / (alpha + 1)
+    h2 = (1 - alpha) / (alpha + 1)
+    h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
+    h = np.array(h)
+    return h
+
+
+def fspecial(filter_type, *args, **kwargs):
+    '''
+    python code from:
+    https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
+    '''
+    if filter_type == 'gaussian':
+        return fspecial_gaussian(*args, **kwargs)
+    if filter_type == 'laplacian':
+        return fspecial_laplacian(*args, **kwargs)
+
+
+"""
+# --------------------------------------------
+# degradation models
+# --------------------------------------------
+"""
+
+
+def bicubic_degradation(x, sf=3):
+    '''
+    Args:
+        x: HxWxC image, [0, 1]
+        sf: down-scale factor
+    Return:
+        bicubicly downsampled LR image
+    '''
+    x = util.imresize_np(x, scale=1 / sf)
+    return x
+
+
+def srmd_degradation(x, k, sf=3):
+    ''' blur + bicubic downsampling
+    Args:
+        x: HxWxC image, [0, 1]
+        k: hxw, double
+        sf: down-scale factor
+    Return:
+        downsampled LR image
+    Reference:
+        @inproceedings{zhang2018learning,
+          title={Learning a single convolutional super-resolution network for multiple degradations},
+          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+          pages={3262--3271},
+          year={2018}
+        }
+    '''
+    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')  # 'nearest' | 'mirror'
+    x = bicubic_degradation(x, sf=sf)
+    return x
+
+
+def dpsr_degradation(x, k, sf=3):
+    ''' bicubic downsampling + blur
+    Args:
+        x: HxWxC image, [0, 1]
+        k: hxw, double
+        sf: down-scale factor
+    Return:
+        downsampled LR image
+    Reference:
+        @inproceedings{zhang2019deep,
+          title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
+          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
+          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
+          pages={1671--1681},
+          year={2019}
+        }
+    '''
+    x = bicubic_degradation(x, sf=sf)
+    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+    return x
+
+
+def classical_degradation(x, k, sf=3):
+    ''' blur + downsampling
+    Args:
+        x: HxWxC image, [0, 1]/[0, 255]
+        k: hxw, double
+        sf: down-scale factor
+    Return:
+        downsampled LR image
+    '''
+    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
+    # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
+    st = 0
+    return x[st::sf, st::sf, ...]
+
+
+def add_sharpening(img, weight=0.5, radius=50, threshold=10):
+    """USM sharpening. borrowed from real-ESRGAN
+    Input image: I; Blurry image: B.
+    1. K = I + weight * (I - B)
+    2. Mask = 1 if abs(I - B) > threshold, else: 0
+    3. Blur mask:
+    4. Out = Mask * K + (1 - Mask) * I
+    Args:
+        img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
+        weight (float): Sharp weight. Default: 1.
+        radius (float): Kernel size of Gaussian blur. Default: 50.
+        threshold (int):
+    """
+    if radius % 2 == 0:
+        radius += 1
+    blur = cv2.GaussianBlur(img, (radius, radius), 0)
+    residual = img - blur
+    mask = np.abs(residual) * 255 > threshold
+    mask = mask.astype('float32')
+    soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
+
+    K = img + weight * residual
+    K = np.clip(K, 0, 1)
+    return soft_mask * K + (1 - soft_mask) * img
+
+
+def add_blur(img, sf=4):
+    wd2 = 4.0 + sf
+    wd = 2.0 + 0.2 * sf
+
+    wd2 = wd2/4
+    wd = wd/4
+
+    if random.random() < 0.5:
+        l1 = wd2 * random.random()
+        l2 = wd2 * random.random()
+        k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
+    else:
+        k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
+    img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
+
+    return img
+
+
+def add_resize(img, sf=4):
+    rnum = np.random.rand()
+    if rnum > 0.8:  # up
+        sf1 = random.uniform(1, 2)
+    elif rnum < 0.7:  # down
+        sf1 = random.uniform(0.5 / sf, 1)
+    else:
+        sf1 = 1.0
+    img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
+    img = np.clip(img, 0.0, 1.0)
+
+    return img
+
+
+# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+#     noise_level = random.randint(noise_level1, noise_level2)
+#     rnum = np.random.rand()
+#     if rnum > 0.6:  # add color Gaussian noise
+#         img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+#     elif rnum < 0.4:  # add grayscale Gaussian noise
+#         img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+#     else:  # add  noise
+#         L = noise_level2 / 255.
+#         D = np.diag(np.random.rand(3))
+#         U = orth(np.random.rand(3, 3))
+#         conv = np.dot(np.dot(np.transpose(U), D), U)
+#         img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+#     img = np.clip(img, 0.0, 1.0)
+#     return img
+
+def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
+    noise_level = random.randint(noise_level1, noise_level2)
+    rnum = np.random.rand()
+    if rnum > 0.6:  # add color Gaussian noise
+        img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+    elif rnum < 0.4:  # add grayscale Gaussian noise
+        img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+    else:  # add  noise
+        L = noise_level2 / 255.
+        D = np.diag(np.random.rand(3))
+        U = orth(np.random.rand(3, 3))
+        conv = np.dot(np.dot(np.transpose(U), D), U)
+        img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+    img = np.clip(img, 0.0, 1.0)
+    return img
+
+
+def add_speckle_noise(img, noise_level1=2, noise_level2=25):
+    noise_level = random.randint(noise_level1, noise_level2)
+    img = np.clip(img, 0.0, 1.0)
+    rnum = random.random()
+    if rnum > 0.6:
+        img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
+    elif rnum < 0.4:
+        img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
+    else:
+        L = noise_level2 / 255.
+        D = np.diag(np.random.rand(3))
+        U = orth(np.random.rand(3, 3))
+        conv = np.dot(np.dot(np.transpose(U), D), U)
+        img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
+    img = np.clip(img, 0.0, 1.0)
+    return img
+
+
+def add_Poisson_noise(img):
+    img = np.clip((img * 255.0).round(), 0, 255) / 255.
+    vals = 10 ** (2 * random.random() + 2.0)  # [2, 4]
+    if random.random() < 0.5:
+        img = np.random.poisson(img * vals).astype(np.float32) / vals
+    else:
+        img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
+        img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
+        noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
+        img += noise_gray[:, :, np.newaxis]
+    img = np.clip(img, 0.0, 1.0)
+    return img
+
+
+def add_JPEG_noise(img):
+    quality_factor = random.randint(80, 95)
+    img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
+    result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
+    img = cv2.imdecode(encimg, 1)
+    img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
+    return img
+
+
+def random_crop(lq, hq, sf=4, lq_patchsize=64):
+    h, w = lq.shape[:2]
+    rnd_h = random.randint(0, h - lq_patchsize)
+    rnd_w = random.randint(0, w - lq_patchsize)
+    lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
+
+    rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
+    hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
+    return lq, hq
+
+
+def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
+    """
+    This is the degradation model of BSRGAN from the paper
+    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+    ----------
+    img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
+    sf: scale factor
+    isp_model: camera ISP model
+    Returns
+    -------
+    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+    """
+    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+    sf_ori = sf
+
+    h1, w1 = img.shape[:2]
+    img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
+    h, w = img.shape[:2]
+
+    if h < lq_patchsize * sf or w < lq_patchsize * sf:
+        raise ValueError(f'img size ({h1}X{w1}) is too small!')
+
+    hq = img.copy()
+
+    if sf == 4 and random.random() < scale2_prob:  # downsample1
+        if np.random.rand() < 0.5:
+            img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
+                             interpolation=random.choice([1, 2, 3]))
+        else:
+            img = util.imresize_np(img, 1 / 2, True)
+        img = np.clip(img, 0.0, 1.0)
+        sf = 2
+
+    shuffle_order = random.sample(range(7), 7)
+    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+    if idx1 > idx2:  # keep downsample3 last
+        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+    for i in shuffle_order:
+
+        if i == 0:
+            img = add_blur(img, sf=sf)
+
+        elif i == 1:
+            img = add_blur(img, sf=sf)
+
+        elif i == 2:
+            a, b = img.shape[1], img.shape[0]
+            # downsample2
+            if random.random() < 0.75:
+                sf1 = random.uniform(1, 2 * sf)
+                img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
+                                 interpolation=random.choice([1, 2, 3]))
+            else:
+                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+                k_shifted = shift_pixel(k, sf)
+                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
+                img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
+                img = img[0::sf, 0::sf, ...]  # nearest downsampling
+            img = np.clip(img, 0.0, 1.0)
+
+        elif i == 3:
+            # downsample3
+            img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+            img = np.clip(img, 0.0, 1.0)
+
+        elif i == 4:
+            # add Gaussian noise
+            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
+
+        elif i == 5:
+            # add JPEG noise
+            if random.random() < jpeg_prob:
+                img = add_JPEG_noise(img)
+
+        elif i == 6:
+            # add processed camera sensor noise
+            if random.random() < isp_prob and isp_model is not None:
+                with torch.no_grad():
+                    img, hq = isp_model.forward(img.copy(), hq)
+
+    # add final JPEG compression noise
+    img = add_JPEG_noise(img)
+
+    # random crop
+    img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
+
+    return img, hq
+
+
+# todo no isp_model?
+def degradation_bsrgan_variant(image, sf=4, isp_model=None):
+    """
+    This is the degradation model of BSRGAN from the paper
+    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
+    ----------
+    sf: scale factor
+    isp_model: camera ISP model
+    Returns
+    -------
+    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
+    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
+    """
+    image = util.uint2single(image)
+    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
+    sf_ori = sf
+
+    h1, w1 = image.shape[:2]
+    image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
+    h, w = image.shape[:2]
+
+    hq = image.copy()
+
+    if sf == 4 and random.random() < scale2_prob:  # downsample1
+        if np.random.rand() < 0.5:
+            image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
+                               interpolation=random.choice([1, 2, 3]))
+        else:
+            image = util.imresize_np(image, 1 / 2, True)
+        image = np.clip(image, 0.0, 1.0)
+        sf = 2
+
+    shuffle_order = random.sample(range(7), 7)
+    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
+    if idx1 > idx2:  # keep downsample3 last
+        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
+
+    for i in shuffle_order:
+
+        if i == 0:
+            image = add_blur(image, sf=sf)
+
+        # elif i == 1:
+        #     image = add_blur(image, sf=sf)
+
+        if i == 0:
+            pass
+
+        elif i == 2:
+            a, b = image.shape[1], image.shape[0]
+            # downsample2
+            if random.random() < 0.8:
+                sf1 = random.uniform(1, 2 * sf)
+                image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
+                                   interpolation=random.choice([1, 2, 3]))
+            else:
+                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
+                k_shifted = shift_pixel(k, sf)
+                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
+                image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
+                image = image[0::sf, 0::sf, ...]  # nearest downsampling
+
+            image = np.clip(image, 0.0, 1.0)
+
+        elif i == 3:
+            # downsample3
+            image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
+            image = np.clip(image, 0.0, 1.0)
+
+        elif i == 4:
+            # add Gaussian noise
+            image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
+
+        elif i == 5:
+            # add JPEG noise
+            if random.random() < jpeg_prob:
+                image = add_JPEG_noise(image)
+        #
+        # elif i == 6:
+        #     # add processed camera sensor noise
+        #     if random.random() < isp_prob and isp_model is not None:
+        #         with torch.no_grad():
+        #             img, hq = isp_model.forward(img.copy(), hq)
+
+    # add final JPEG compression noise
+    image = add_JPEG_noise(image)
+    image = util.single2uint(image)
+    example = {"image": image}
+    return example
+
+
+
+
+if __name__ == '__main__':
+    print("hey")
+    img = util.imread_uint('utils/test.png', 3)
+    img = img[:448, :448]
+    h = img.shape[0] // 4
+    print("resizing to", h)
+    sf = 4
+    deg_fn = partial(degradation_bsrgan_variant, sf=sf)
+    for i in range(20):
+        print(i)
+        img_hq = img
+        img_lq = deg_fn(img)["image"]
+        img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
+        print(img_lq)
+        img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
+        print(img_lq.shape)
+        print("bicubic", img_lq_bicubic.shape)
+        print(img_hq.shape)
+        lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+                                interpolation=0)
+        lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
+                                        (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
+                                        interpolation=0)
+        img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
+        util.imsave(img_concat, str(i) + '.png')
diff --git a/lidm/modules/image_degradation/utils/test.png b/lidm/modules/image_degradation/utils/test.png
new file mode 100644
index 0000000000000000000000000000000000000000..4249b43de0f22707758d13c240268a401642f6e6
Binary files /dev/null and b/lidm/modules/image_degradation/utils/test.png differ
diff --git a/lidm/modules/image_degradation/utils_image.py b/lidm/modules/image_degradation/utils_image.py
new file mode 100644
index 0000000000000000000000000000000000000000..0175f155ad900ae33c3c46ed87f49b352e3faf98
--- /dev/null
+++ b/lidm/modules/image_degradation/utils_image.py
@@ -0,0 +1,916 @@
+import os
+import math
+import random
+import numpy as np
+import torch
+import cv2
+from torchvision.utils import make_grid
+from datetime import datetime
+#import matplotlib.pyplot as plt   # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
+
+
+os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
+
+
+'''
+# --------------------------------------------
+# Kai Zhang (github: https://github.com/cszn)
+# 03/Mar/2019
+# --------------------------------------------
+# https://github.com/twhui/SRGAN-pyTorch
+# https://github.com/xinntao/BasicSR
+# --------------------------------------------
+'''
+
+
+IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
+
+
+def is_image_file(filename):
+    return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
+
+
+def get_timestamp():
+    return datetime.now().strftime('%y%m%d-%H%M%S')
+
+
+def imshow(x, title=None, cbar=False, figsize=None):
+    plt.figure(figsize=figsize)
+    plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
+    if title:
+        plt.title(title)
+    if cbar:
+        plt.colorbar()
+    plt.show()
+
+
+def surf(Z, cmap='rainbow', figsize=None):
+    plt.figure(figsize=figsize)
+    ax3 = plt.axes(projection='3d')
+
+    w, h = Z.shape[:2]
+    xx = np.arange(0,w,1)
+    yy = np.arange(0,h,1)
+    X, Y = np.meshgrid(xx, yy)
+    ax3.plot_surface(X,Y,Z,cmap=cmap)
+    #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap)
+    plt.show()
+
+
+'''
+# --------------------------------------------
+# get image pathes
+# --------------------------------------------
+'''
+
+
+def get_image_paths(dataroot):
+    paths = None  # return None if dataroot is None
+    if dataroot is not None:
+        paths = sorted(_get_paths_from_images(dataroot))
+    return paths
+
+
+def _get_paths_from_images(path):
+    assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
+    images = []
+    for dirpath, _, fnames in sorted(os.walk(path)):
+        for fname in sorted(fnames):
+            if is_image_file(fname):
+                img_path = os.path.join(dirpath, fname)
+                images.append(img_path)
+    assert images, '{:s} has no valid image file'.format(path)
+    return images
+
+
+'''
+# --------------------------------------------
+# split large images into small images 
+# --------------------------------------------
+'''
+
+
+def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
+    w, h = img.shape[:2]
+    patches = []
+    if w > p_max and h > p_max:
+        w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
+        h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
+        w1.append(w-p_size)
+        h1.append(h-p_size)
+#        print(w1)
+#        print(h1)
+        for i in w1:
+            for j in h1:
+                patches.append(img[i:i+p_size, j:j+p_size,:])
+    else:
+        patches.append(img)
+
+    return patches
+
+
+def imssave(imgs, img_path):
+    """
+    imgs: list, N images of size WxHxC
+    """
+    img_name, ext = os.path.splitext(os.path.basename(img_path))
+
+    for i, img in enumerate(imgs):
+        if img.ndim == 3:
+            img = img[:, :, [2, 1, 0]]
+        new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
+        cv2.imwrite(new_path, img)
+
+
+def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
+    """
+    split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
+    and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
+    will be splitted.
+    Args:
+        original_dataroot:
+        taget_dataroot:
+        p_size: size of small images
+        p_overlap: patch size in training is a good choice
+        p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
+    """
+    paths = get_image_paths(original_dataroot)
+    for img_path in paths:
+        # img_name, ext = os.path.splitext(os.path.basename(img_path))
+        img = imread_uint(img_path, n_channels=n_channels)
+        patches = patches_from_image(img, p_size, p_overlap, p_max)
+        imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
+        #if original_dataroot == taget_dataroot:
+        #del img_path
+
+'''
+# --------------------------------------------
+# makedir
+# --------------------------------------------
+'''
+
+
+def mkdir(path):
+    if not os.path.exists(path):
+        os.makedirs(path)
+
+
+def mkdirs(paths):
+    if isinstance(paths, str):
+        mkdir(paths)
+    else:
+        for path in paths:
+            mkdir(path)
+
+
+def mkdir_and_rename(path):
+    if os.path.exists(path):
+        new_name = path + '_archived_' + get_timestamp()
+        print('Path already exists. Rename it to [{:s}]'.format(new_name))
+        os.rename(path, new_name)
+    os.makedirs(path)
+
+
+'''
+# --------------------------------------------
+# read image from path
+# opencv is fast, but read BGR numpy image
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# get uint8 image of size HxWxn_channles (RGB)
+# --------------------------------------------
+def imread_uint(path, n_channels=3):
+    #  input: path
+    # output: HxWx3(RGB or GGG), or HxWx1 (G)
+    if n_channels == 1:
+        img = cv2.imread(path, 0)  # cv2.IMREAD_GRAYSCALE
+        img = np.expand_dims(img, axis=2)  # HxWx1
+    elif n_channels == 3:
+        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # BGR or G
+        if img.ndim == 2:
+            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)  # GGG
+        else:
+            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB
+    return img
+
+
+# --------------------------------------------
+# matlab's imwrite
+# --------------------------------------------
+def imsave(img, img_path):
+    img = np.squeeze(img)
+    if img.ndim == 3:
+        img = img[:, :, [2, 1, 0]]
+    cv2.imwrite(img_path, img)
+
+def imwrite(img, img_path):
+    img = np.squeeze(img)
+    if img.ndim == 3:
+        img = img[:, :, [2, 1, 0]]
+    cv2.imwrite(img_path, img)
+
+
+
+# --------------------------------------------
+# get single image of size HxWxn_channles (BGR)
+# --------------------------------------------
+def read_img(path):
+    # read image by cv2
+    # return: Numpy float32, HWC, BGR, [0,1]
+    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # cv2.IMREAD_GRAYSCALE
+    img = img.astype(np.float32) / 255.
+    if img.ndim == 2:
+        img = np.expand_dims(img, axis=2)
+    # some images have 4 channels
+    if img.shape[2] > 3:
+        img = img[:, :, :3]
+    return img
+
+
+'''
+# --------------------------------------------
+# image format conversion
+# --------------------------------------------
+# numpy(single) <--->  numpy(unit)
+# numpy(single) <--->  tensor
+# numpy(unit)   <--->  tensor
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# numpy(single) [0, 1] <--->  numpy(unit)
+# --------------------------------------------
+
+
+def uint2single(img):
+
+    return np.float32(img/255.)
+
+
+def single2uint(img):
+
+    return np.uint8((img.clip(0, 1)*255.).round())
+
+
+def uint162single(img):
+
+    return np.float32(img/65535.)
+
+
+def single2uint16(img):
+
+    return np.uint16((img.clip(0, 1)*65535.).round())
+
+
+# --------------------------------------------
+# numpy(unit) (HxWxC or HxW) <--->  tensor
+# --------------------------------------------
+
+
+# convert uint to 4-dimensional torch tensor
+def uint2tensor4(img):
+    if img.ndim == 2:
+        img = np.expand_dims(img, axis=2)
+    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
+
+
+# convert uint to 3-dimensional torch tensor
+def uint2tensor3(img):
+    if img.ndim == 2:
+        img = np.expand_dims(img, axis=2)
+    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
+
+
+# convert 2/3/4-dimensional torch tensor to uint
+def tensor2uint(img):
+    img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
+    if img.ndim == 3:
+        img = np.transpose(img, (1, 2, 0))
+    return np.uint8((img*255.0).round())
+
+
+# --------------------------------------------
+# numpy(single) (HxWxC) <--->  tensor
+# --------------------------------------------
+
+
+# convert single (HxWxC) to 3-dimensional torch tensor
+def single2tensor3(img):
+    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
+
+
+# convert single (HxWxC) to 4-dimensional torch tensor
+def single2tensor4(img):
+    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
+
+
+# convert torch tensor to single
+def tensor2single(img):
+    img = img.data.squeeze().float().cpu().numpy()
+    if img.ndim == 3:
+        img = np.transpose(img, (1, 2, 0))
+
+    return img
+
+# convert torch tensor to single
+def tensor2single3(img):
+    img = img.data.squeeze().float().cpu().numpy()
+    if img.ndim == 3:
+        img = np.transpose(img, (1, 2, 0))
+    elif img.ndim == 2:
+        img = np.expand_dims(img, axis=2)
+    return img
+
+
+def single2tensor5(img):
+    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
+
+
+def single32tensor5(img):
+    return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
+
+
+def single42tensor4(img):
+    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
+
+
+# from skimage.io import imread, imsave
+def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
+    '''
+    Converts a torch Tensor into an image Numpy array of BGR channel order
+    Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
+    Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
+    '''
+    tensor = tensor.squeeze().float().cpu().clamp_(*min_max)  # squeeze first, then clamp
+    tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])  # to range [0,1]
+    n_dim = tensor.dim()
+    if n_dim == 4:
+        n_img = len(tensor)
+        img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
+        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
+    elif n_dim == 3:
+        img_np = tensor.numpy()
+        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
+    elif n_dim == 2:
+        img_np = tensor.numpy()
+    else:
+        raise TypeError(
+            'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
+    if out_type == np.uint8:
+        img_np = (img_np * 255.0).round()
+        # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
+    return img_np.astype(out_type)
+
+
+'''
+# --------------------------------------------
+# Augmentation, flipe and/or rotate
+# --------------------------------------------
+# The following two are enough.
+# (1) augmet_img: numpy image of WxHxC or WxH
+# (2) augment_img_tensor4: tensor image 1xCxWxH
+# --------------------------------------------
+'''
+
+
+def augment_img(img, mode=0):
+    '''Kai Zhang (github: https://github.com/cszn)
+    '''
+    if mode == 0:
+        return img
+    elif mode == 1:
+        return np.flipud(np.rot90(img))
+    elif mode == 2:
+        return np.flipud(img)
+    elif mode == 3:
+        return np.rot90(img, k=3)
+    elif mode == 4:
+        return np.flipud(np.rot90(img, k=2))
+    elif mode == 5:
+        return np.rot90(img)
+    elif mode == 6:
+        return np.rot90(img, k=2)
+    elif mode == 7:
+        return np.flipud(np.rot90(img, k=3))
+
+
+def augment_img_tensor4(img, mode=0):
+    '''Kai Zhang (github: https://github.com/cszn)
+    '''
+    if mode == 0:
+        return img
+    elif mode == 1:
+        return img.rot90(1, [2, 3]).flip([2])
+    elif mode == 2:
+        return img.flip([2])
+    elif mode == 3:
+        return img.rot90(3, [2, 3])
+    elif mode == 4:
+        return img.rot90(2, [2, 3]).flip([2])
+    elif mode == 5:
+        return img.rot90(1, [2, 3])
+    elif mode == 6:
+        return img.rot90(2, [2, 3])
+    elif mode == 7:
+        return img.rot90(3, [2, 3]).flip([2])
+
+
+def augment_img_tensor(img, mode=0):
+    '''Kai Zhang (github: https://github.com/cszn)
+    '''
+    img_size = img.size()
+    img_np = img.data.cpu().numpy()
+    if len(img_size) == 3:
+        img_np = np.transpose(img_np, (1, 2, 0))
+    elif len(img_size) == 4:
+        img_np = np.transpose(img_np, (2, 3, 1, 0))
+    img_np = augment_img(img_np, mode=mode)
+    img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
+    if len(img_size) == 3:
+        img_tensor = img_tensor.permute(2, 0, 1)
+    elif len(img_size) == 4:
+        img_tensor = img_tensor.permute(3, 2, 0, 1)
+
+    return img_tensor.type_as(img)
+
+
+def augment_img_np3(img, mode=0):
+    if mode == 0:
+        return img
+    elif mode == 1:
+        return img.transpose(1, 0, 2)
+    elif mode == 2:
+        return img[::-1, :, :]
+    elif mode == 3:
+        img = img[::-1, :, :]
+        img = img.transpose(1, 0, 2)
+        return img
+    elif mode == 4:
+        return img[:, ::-1, :]
+    elif mode == 5:
+        img = img[:, ::-1, :]
+        img = img.transpose(1, 0, 2)
+        return img
+    elif mode == 6:
+        img = img[:, ::-1, :]
+        img = img[::-1, :, :]
+        return img
+    elif mode == 7:
+        img = img[:, ::-1, :]
+        img = img[::-1, :, :]
+        img = img.transpose(1, 0, 2)
+        return img
+
+
+def augment_imgs(img_list, hflip=True, rot=True):
+    # horizontal flip OR rotate
+    hflip = hflip and random.random() < 0.5
+    vflip = rot and random.random() < 0.5
+    rot90 = rot and random.random() < 0.5
+
+    def _augment(img):
+        if hflip:
+            img = img[:, ::-1, :]
+        if vflip:
+            img = img[::-1, :, :]
+        if rot90:
+            img = img.transpose(1, 0, 2)
+        return img
+
+    return [_augment(img) for img in img_list]
+
+
+'''
+# --------------------------------------------
+# modcrop and shave
+# --------------------------------------------
+'''
+
+
+def modcrop(img_in, scale):
+    # img_in: Numpy, HWC or HW
+    img = np.copy(img_in)
+    if img.ndim == 2:
+        H, W = img.shape
+        H_r, W_r = H % scale, W % scale
+        img = img[:H - H_r, :W - W_r]
+    elif img.ndim == 3:
+        H, W, C = img.shape
+        H_r, W_r = H % scale, W % scale
+        img = img[:H - H_r, :W - W_r, :]
+    else:
+        raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
+    return img
+
+
+def shave(img_in, border=0):
+    # img_in: Numpy, HWC or HW
+    img = np.copy(img_in)
+    h, w = img.shape[:2]
+    img = img[border:h-border, border:w-border]
+    return img
+
+
+'''
+# --------------------------------------------
+# image processing process on numpy image
+# channel_convert(in_c, tar_type, img_list):
+# rgb2ycbcr(img, only_y=True):
+# bgr2ycbcr(img, only_y=True):
+# ycbcr2rgb(img):
+# --------------------------------------------
+'''
+
+
+def rgb2ycbcr(img, only_y=True):
+    '''same as matlab rgb2ycbcr
+    only_y: only return Y channel
+    Input:
+        uint8, [0, 255]
+        float, [0, 1]
+    '''
+    in_img_type = img.dtype
+    img.astype(np.float32)
+    if in_img_type != np.uint8:
+        img *= 255.
+    # convert
+    if only_y:
+        rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
+    else:
+        rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
+                              [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
+    if in_img_type == np.uint8:
+        rlt = rlt.round()
+    else:
+        rlt /= 255.
+    return rlt.astype(in_img_type)
+
+
+def ycbcr2rgb(img):
+    '''same as matlab ycbcr2rgb
+    Input:
+        uint8, [0, 255]
+        float, [0, 1]
+    '''
+    in_img_type = img.dtype
+    img.astype(np.float32)
+    if in_img_type != np.uint8:
+        img *= 255.
+    # convert
+    rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
+                          [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
+    if in_img_type == np.uint8:
+        rlt = rlt.round()
+    else:
+        rlt /= 255.
+    return rlt.astype(in_img_type)
+
+
+def bgr2ycbcr(img, only_y=True):
+    '''bgr version of rgb2ycbcr
+    only_y: only return Y channel
+    Input:
+        uint8, [0, 255]
+        float, [0, 1]
+    '''
+    in_img_type = img.dtype
+    img.astype(np.float32)
+    if in_img_type != np.uint8:
+        img *= 255.
+    # convert
+    if only_y:
+        rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
+    else:
+        rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
+                              [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
+    if in_img_type == np.uint8:
+        rlt = rlt.round()
+    else:
+        rlt /= 255.
+    return rlt.astype(in_img_type)
+
+
+def channel_convert(in_c, tar_type, img_list):
+    # conversion among BGR, gray and y
+    if in_c == 3 and tar_type == 'gray':  # BGR to gray
+        gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
+        return [np.expand_dims(img, axis=2) for img in gray_list]
+    elif in_c == 3 and tar_type == 'y':  # BGR to y
+        y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
+        return [np.expand_dims(img, axis=2) for img in y_list]
+    elif in_c == 1 and tar_type == 'RGB':  # gray/y to BGR
+        return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
+    else:
+        return img_list
+
+
+'''
+# --------------------------------------------
+# metric, PSNR and SSIM
+# --------------------------------------------
+'''
+
+
+# --------------------------------------------
+# PSNR
+# --------------------------------------------
+def calculate_psnr(img1, img2, border=0):
+    # img1 and img2 have range [0, 255]
+    #img1 = img1.squeeze()
+    #img2 = img2.squeeze()
+    if not img1.shape == img2.shape:
+        raise ValueError('Input images must have the same dimensions.')
+    h, w = img1.shape[:2]
+    img1 = img1[border:h-border, border:w-border]
+    img2 = img2[border:h-border, border:w-border]
+
+    img1 = img1.astype(np.float64)
+    img2 = img2.astype(np.float64)
+    mse = np.mean((img1 - img2)**2)
+    if mse == 0:
+        return float('inf')
+    return 20 * math.log10(255.0 / math.sqrt(mse))
+
+
+# --------------------------------------------
+# SSIM
+# --------------------------------------------
+def calculate_ssim(img1, img2, border=0):
+    '''calculate SSIM
+    the same outputs as MATLAB's
+    img1, img2: [0, 255]
+    '''
+    #img1 = img1.squeeze()
+    #img2 = img2.squeeze()
+    if not img1.shape == img2.shape:
+        raise ValueError('Input images must have the same dimensions.')
+    h, w = img1.shape[:2]
+    img1 = img1[border:h-border, border:w-border]
+    img2 = img2[border:h-border, border:w-border]
+
+    if img1.ndim == 2:
+        return ssim(img1, img2)
+    elif img1.ndim == 3:
+        if img1.shape[2] == 3:
+            ssims = []
+            for i in range(3):
+                ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
+            return np.array(ssims).mean()
+        elif img1.shape[2] == 1:
+            return ssim(np.squeeze(img1), np.squeeze(img2))
+    else:
+        raise ValueError('Wrong input image dimensions.')
+
+
+def ssim(img1, img2):
+    C1 = (0.01 * 255)**2
+    C2 = (0.03 * 255)**2
+
+    img1 = img1.astype(np.float64)
+    img2 = img2.astype(np.float64)
+    kernel = cv2.getGaussianKernel(11, 1.5)
+    window = np.outer(kernel, kernel.transpose())
+
+    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
+    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
+    mu1_sq = mu1**2
+    mu2_sq = mu2**2
+    mu1_mu2 = mu1 * mu2
+    sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
+    sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
+    sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
+
+    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
+                                                            (sigma1_sq + sigma2_sq + C2))
+    return ssim_map.mean()
+
+
+'''
+# --------------------------------------------
+# matlab's bicubic imresize (numpy and torch) [0, 1]
+# --------------------------------------------
+'''
+
+
+# matlab 'imresize' function, now only support 'bicubic'
+def cubic(x):
+    absx = torch.abs(x)
+    absx2 = absx**2
+    absx3 = absx**3
+    return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
+        (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
+
+
+def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
+    if (scale < 1) and (antialiasing):
+        # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
+        kernel_width = kernel_width / scale
+
+    # Output-space coordinates
+    x = torch.linspace(1, out_length, out_length)
+
+    # Input-space coordinates. Calculate the inverse mapping such that 0.5
+    # in output space maps to 0.5 in input space, and 0.5+scale in output
+    # space maps to 1.5 in input space.
+    u = x / scale + 0.5 * (1 - 1 / scale)
+
+    # What is the left-most pixel that can be involved in the computation?
+    left = torch.floor(u - kernel_width / 2)
+
+    # What is the maximum number of pixels that can be involved in the
+    # computation?  Note: it's OK to use an extra pixel here; if the
+    # corresponding weights are all zero, it will be eliminated at the end
+    # of this function.
+    P = math.ceil(kernel_width) + 2
+
+    # The indices of the input pixels involved in computing the k-th output
+    # pixel are in row k of the indices matrix.
+    indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
+        1, P).expand(out_length, P)
+
+    # The weights used to compute the k-th output pixel are in row k of the
+    # weights matrix.
+    distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
+    # apply cubic kernel
+    if (scale < 1) and (antialiasing):
+        weights = scale * cubic(distance_to_center * scale)
+    else:
+        weights = cubic(distance_to_center)
+    # Normalize the weights matrix so that each row sums to 1.
+    weights_sum = torch.sum(weights, 1).view(out_length, 1)
+    weights = weights / weights_sum.expand(out_length, P)
+
+    # If a column in weights is all zero, get rid of it. only consider the first and last column.
+    weights_zero_tmp = torch.sum((weights == 0), 0)
+    if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
+        indices = indices.narrow(1, 1, P - 2)
+        weights = weights.narrow(1, 1, P - 2)
+    if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
+        indices = indices.narrow(1, 0, P - 2)
+        weights = weights.narrow(1, 0, P - 2)
+    weights = weights.contiguous()
+    indices = indices.contiguous()
+    sym_len_s = -indices.min() + 1
+    sym_len_e = indices.max() - in_length
+    indices = indices + sym_len_s - 1
+    return weights, indices, int(sym_len_s), int(sym_len_e)
+
+
+# --------------------------------------------
+# imresize for tensor image [0, 1]
+# --------------------------------------------
+def imresize(img, scale, antialiasing=True):
+    # Now the scale should be the same for H and W
+    # input: img: pytorch tensor, CHW or HW [0,1]
+    # output: CHW or HW [0,1] w/o round
+    need_squeeze = True if img.dim() == 2 else False
+    if need_squeeze:
+        img.unsqueeze_(0)
+    in_C, in_H, in_W = img.size()
+    out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+    kernel_width = 4
+    kernel = 'cubic'
+
+    # Return the desired dimension order for performing the resize.  The
+    # strategy is to perform the resize first along the dimension with the
+    # smallest scale factor.
+    # Now we do not support this.
+
+    # get weights and indices
+    weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+        in_H, out_H, scale, kernel, kernel_width, antialiasing)
+    weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+        in_W, out_W, scale, kernel, kernel_width, antialiasing)
+    # process H dimension
+    # symmetric copying
+    img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
+    img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
+
+    sym_patch = img[:, :sym_len_Hs, :]
+    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+    sym_patch_inv = sym_patch.index_select(1, inv_idx)
+    img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+    sym_patch = img[:, -sym_len_He:, :]
+    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+    sym_patch_inv = sym_patch.index_select(1, inv_idx)
+    img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+    out_1 = torch.FloatTensor(in_C, out_H, in_W)
+    kernel_width = weights_H.size(1)
+    for i in range(out_H):
+        idx = int(indices_H[i][0])
+        for j in range(out_C):
+            out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
+
+    # process W dimension
+    # symmetric copying
+    out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
+    out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
+
+    sym_patch = out_1[:, :, :sym_len_Ws]
+    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+    sym_patch_inv = sym_patch.index_select(2, inv_idx)
+    out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+    sym_patch = out_1[:, :, -sym_len_We:]
+    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
+    sym_patch_inv = sym_patch.index_select(2, inv_idx)
+    out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+    out_2 = torch.FloatTensor(in_C, out_H, out_W)
+    kernel_width = weights_W.size(1)
+    for i in range(out_W):
+        idx = int(indices_W[i][0])
+        for j in range(out_C):
+            out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
+    if need_squeeze:
+        out_2.squeeze_()
+    return out_2
+
+
+# --------------------------------------------
+# imresize for numpy image [0, 1]
+# --------------------------------------------
+def imresize_np(img, scale, antialiasing=True):
+    # Now the scale should be the same for H and W
+    # input: img: Numpy, HWC or HW [0,1]
+    # output: HWC or HW [0,1] w/o round
+    img = torch.from_numpy(img)
+    need_squeeze = True if img.dim() == 2 else False
+    if need_squeeze:
+        img.unsqueeze_(2)
+
+    in_H, in_W, in_C = img.size()
+    out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
+    kernel_width = 4
+    kernel = 'cubic'
+
+    # Return the desired dimension order for performing the resize.  The
+    # strategy is to perform the resize first along the dimension with the
+    # smallest scale factor.
+    # Now we do not support this.
+
+    # get weights and indices
+    weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
+        in_H, out_H, scale, kernel, kernel_width, antialiasing)
+    weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
+        in_W, out_W, scale, kernel, kernel_width, antialiasing)
+    # process H dimension
+    # symmetric copying
+    img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
+    img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
+
+    sym_patch = img[:sym_len_Hs, :, :]
+    inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+    sym_patch_inv = sym_patch.index_select(0, inv_idx)
+    img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
+
+    sym_patch = img[-sym_len_He:, :, :]
+    inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
+    sym_patch_inv = sym_patch.index_select(0, inv_idx)
+    img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
+
+    out_1 = torch.FloatTensor(out_H, in_W, in_C)
+    kernel_width = weights_H.size(1)
+    for i in range(out_H):
+        idx = int(indices_H[i][0])
+        for j in range(out_C):
+            out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
+
+    # process W dimension
+    # symmetric copying
+    out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
+    out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
+
+    sym_patch = out_1[:, :sym_len_Ws, :]
+    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+    sym_patch_inv = sym_patch.index_select(1, inv_idx)
+    out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
+
+    sym_patch = out_1[:, -sym_len_We:, :]
+    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
+    sym_patch_inv = sym_patch.index_select(1, inv_idx)
+    out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
+
+    out_2 = torch.FloatTensor(out_H, out_W, in_C)
+    kernel_width = weights_W.size(1)
+    for i in range(out_W):
+        idx = int(indices_W[i][0])
+        for j in range(out_C):
+            out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
+    if need_squeeze:
+        out_2.squeeze_()
+
+    return out_2.numpy()
+
+
+if __name__ == '__main__':
+    print('---')
+#    img = imread_uint('test.bmp', 3)
+#    img = uint2single(img)
+#    img_bicubic = imresize_np(img, 1/4)
\ No newline at end of file
diff --git a/lidm/modules/losses/__init__.py b/lidm/modules/losses/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..ef46a16db54ad2fc925f47c54843a11315575f73
--- /dev/null
+++ b/lidm/modules/losses/__init__.py
@@ -0,0 +1,54 @@
+import torch
+import torch.nn.functional as F
+from torch import nn
+
+
+def adopt_weight(weight, global_step, threshold=0, value=0.):
+    if global_step < threshold:
+        weight = value
+    return weight
+
+
+def hinge_d_loss(logits_real, logits_fake):
+    loss_real = torch.mean(F.relu(1. - logits_real))
+    loss_fake = torch.mean(F.relu(1. + logits_fake))
+    d_loss = 0.5 * (loss_real + loss_fake)
+    return d_loss
+
+
+def vanilla_d_loss(logits_real, logits_fake):
+    d_loss = 0.5 * (
+        torch.mean(torch.nn.functional.softplus(-logits_real)) +
+        torch.mean(torch.nn.functional.softplus(logits_fake)))
+    return d_loss
+
+
+def measure_perplexity(predicted_indices, n_embed):
+    # src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
+    # eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
+    encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
+    avg_probs = encodings.mean(0)
+    perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
+    cluster_use = torch.sum(avg_probs > 0)
+    return perplexity, cluster_use
+
+
+def l1(x, y):
+    return torch.abs(x - y)
+
+
+def l2(x, y):
+    return torch.pow((x - y), 2)
+
+
+def square_dist_loss(x, y):
+    return torch.sum((x - y) ** 2, dim=1, keepdim=True)
+
+
+def weights_init(m):
+    classname = m.__class__.__name__
+    if classname.find('Conv') != -1:
+        nn.init.normal_(m.weight.data, 0.0, 0.02)
+    elif classname.find('BatchNorm') != -1:
+        nn.init.normal_(m.weight.data, 1.0, 0.02)
+        nn.init.constant_(m.bias.data, 0)
\ No newline at end of file
diff --git a/lidm/modules/losses/contperceptual.py b/lidm/modules/losses/contperceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..f9afbe01c2d1f6c30a10a810f92feadc082a7090
--- /dev/null
+++ b/lidm/modules/losses/contperceptual.py
@@ -0,0 +1,110 @@
+import torch
+import torch.nn as nn
+
+from . import weights_init, hinge_d_loss, vanilla_d_loss
+from .discriminator import LiDARNLayerDiscriminator
+from .lpips import LPIPS
+
+
+class LPIPSWithDiscriminator(nn.Module):
+    def __init__(self, disc_start, logvar_init=0.0, kl_weight=1.0, pixelloss_weight=1.0,
+                 disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
+                 p_weight=1.0, use_actnorm=False, disc_conditional=False,
+                 disc_loss="hinge", **kwargs):
+
+        super().__init__()
+        assert disc_loss in ["hinge", "vanilla"]
+        self.kl_weight = kl_weight
+        self.pixel_weight = pixelloss_weight
+        self.perceptual_weight = p_weight
+        if p_weight > 0.:
+            self.perceptual_loss = LPIPS().eval()
+        # output log variance
+        self.logvar = nn.Parameter(torch.ones(size=()) * logvar_init)
+
+        self.discriminator = LiDARNLayerDiscriminator(
+            input_nc=disc_in_channels, n_layers=disc_num_layers, use_actnorm=use_actnorm).apply(weights_init)
+        self.discriminator_iter_start = disc_start
+        self.disc_loss = hinge_d_loss if disc_loss == "hinge" else vanilla_d_loss
+        self.disc_factor = disc_factor
+        self.discriminator_weight = disc_weight
+        self.disc_conditional = disc_conditional
+
+    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+        if last_layer is not None:
+            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+        else:
+            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+        d_weight = d_weight * self.discriminator_weight
+        return d_weight
+
+    def forward(self, inputs, reconstructions, posteriors, optimizer_idx,
+                global_step, last_layer=None, cond=None, split="train",
+                weights=None):
+        rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
+        if self.perceptual_weight > 0:
+            p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
+            rec_loss = rec_loss + self.perceptual_weight * p_loss
+
+        nll_loss = rec_loss / torch.exp(self.logvar) + self.logvar
+        weighted_nll_loss = nll_loss
+        if weights is not None:
+            weighted_nll_loss = weights*nll_loss
+        weighted_nll_loss = torch.sum(weighted_nll_loss) / weighted_nll_loss.shape[0]
+        nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
+        kl_loss = posteriors.kl()
+        kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
+
+        # now the GAN part
+        disc_factor = 0. if global_step > self.discriminator_iter_start else self.disc_factor
+        if optimizer_idx == 0:
+            # generator update
+            if cond is None:
+                assert not self.disc_conditional
+                logits_fake = self.discriminator(reconstructions.contiguous())
+            else:
+                assert self.disc_conditional
+                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
+            g_loss = -torch.mean(logits_fake)
+
+            if self.disc_factor > 0.0:
+                try:
+                    d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+                except RuntimeError:
+                    assert not self.training
+                    d_weight = torch.tensor(0.0)
+            else:
+                d_weight = torch.tensor(0.0)
+
+            loss = weighted_nll_loss + self.kl_weight * kl_loss + disc_factor * d_weight * g_loss
+
+            log = {"{}/total_loss".format(split): loss.clone().detach().mean(), "{}/logvar".format(split): self.logvar.detach(),
+                   "{}/kl_loss".format(split): kl_loss.detach().mean(), "{}/nll_loss".format(split): nll_loss.detach().mean(),
+                   "{}/rec_loss".format(split): rec_loss.detach().mean(),
+                   "{}/d_weight".format(split): d_weight.detach(),
+                   "{}/disc_factor".format(split): torch.tensor(disc_factor),
+                   "{}/g_loss".format(split): g_loss.detach().mean(),
+                   }
+            return loss, log
+
+        if optimizer_idx == 1:
+            # second pass for discriminator update
+            if cond is None:
+                logits_real = self.discriminator(inputs.contiguous().detach())
+                logits_fake = self.discriminator(reconstructions.contiguous().detach())
+            else:
+                logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
+                logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
+
+            d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
+
+            log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+                   "{}/logits_real".format(split): logits_real.detach().mean(),
+                   "{}/logits_fake".format(split): logits_fake.detach().mean()
+                   }
+            return d_loss, log
diff --git a/lidm/modules/losses/discriminator.py b/lidm/modules/losses/discriminator.py
new file mode 100644
index 0000000000000000000000000000000000000000..64969ce102bc0088ccce2769bf43cf575c0a3968
--- /dev/null
+++ b/lidm/modules/losses/discriminator.py
@@ -0,0 +1,216 @@
+import functools
+import torch.nn as nn
+
+
+from ..basic import ActNorm, CircularConv2d
+
+
+class NLayerDiscriminator(nn.Module):
+    """Defines a PatchGAN discriminator as in Pix2Pix
+        --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
+    """
+    def __init__(self, input_nc=1, output_nc=1, ndf=64, n_layers=3, use_actnorm=False):
+        """Construct a PatchGAN discriminator
+        Parameters:
+            input_nc (int)  -- the number of channels in input images
+            ndf (int)       -- the number of filters in the last conv layer
+            n_layers (int)  -- the number of conv layers in the discriminator
+            norm_layer      -- normalization layer
+        """
+        super(NLayerDiscriminator, self).__init__()
+        if not use_actnorm:
+            norm_layer = nn.BatchNorm2d
+        else:
+            norm_layer = ActNorm
+        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
+            use_bias = norm_layer.func != nn.BatchNorm2d
+        else:
+            use_bias = norm_layer != nn.BatchNorm2d
+
+        kw = 4
+        padw = 1
+        sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)]
+        nf_mult = 1
+        for n in range(1, n_layers):  # gradually increase the number of filters
+            nf_mult_prev = nf_mult
+            nf_mult = min(2 ** n, 8)
+            sequence += [
+                nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias),
+                norm_layer(ndf * nf_mult),
+                nn.LeakyReLU(0.2, True)
+            ]
+
+        nf_mult_prev = nf_mult
+        nf_mult = min(2 ** n_layers, 8)
+        sequence += [
+            nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias),
+            norm_layer(ndf * nf_mult),
+            nn.LeakyReLU(0.2, True)
+        ]
+
+        sequence += [
+            nn.Conv2d(ndf * nf_mult, output_nc, kernel_size=kw, stride=1, padding=padw)]  # output 1 channel prediction map
+        self.main = nn.Sequential(*sequence)
+
+    def forward(self, input):
+        """Standard forward."""
+        return self.main(input)
+
+
+class LiDARNLayerDiscriminator(nn.Module):
+    """Modified PatchGAN discriminator from Pix2Pix
+        --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
+    """
+    def __init__(self, input_nc=1, output_nc=1, ndf=64, n_layers=3, use_actnorm=False):
+        """Construct a PatchGAN discriminator
+        Parameters:
+            input_nc (int)  -- the number of channels in input images
+            ndf (int)       -- the number of filters in the last conv layer
+            n_layers (int)  -- the number of conv layers in the discriminator
+            norm_layer      -- normalization layer
+        """
+        super(LiDARNLayerDiscriminator, self).__init__()
+        if not use_actnorm:
+            norm_layer = nn.BatchNorm2d
+        else:
+            norm_layer = ActNorm
+        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
+            use_bias = norm_layer.func != nn.BatchNorm2d
+        else:
+            use_bias = norm_layer != nn.BatchNorm2d
+
+        kw = (4, 4)
+        sequence = [CircularConv2d(input_nc, ndf, kernel_size=kw, stride=(1, 2), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True)]
+        nf_mult = 1
+        nf_mult_prev = 1
+        for n in range(1, n_layers):  # gradually increase the number of filters
+            nf_mult_prev = nf_mult
+            nf_mult = min(2 ** n, 8)
+            sequence += [
+                CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=(1, 2), bias=use_bias, padding=(1, 2, 1, 2)),
+                norm_layer(ndf * nf_mult),
+                nn.LeakyReLU(0.2, True)
+            ]
+
+        nf_mult_prev = nf_mult
+        nf_mult = min(2 ** n_layers, 8)
+        sequence += [
+            CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, bias=use_bias, padding=(1, 2, 1, 2)),
+            norm_layer(ndf * nf_mult),
+            nn.LeakyReLU(0.2, True)
+        ]
+
+        sequence += [
+            CircularConv2d(ndf * nf_mult, output_nc, kernel_size=kw, stride=1, padding=(1, 2, 1, 2))]  # output 1 channel prediction map
+        self.main = nn.Sequential(*sequence)
+
+    def forward(self, input):
+        """Standard forward."""
+        return self.main(input)
+
+
+class LiDARNLayerDiscriminatorV2(nn.Module):
+    """Modified PatchGAN discriminator from Pix2Pix (larger receptive field)
+        --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
+    """
+    def __init__(self, input_nc=1, output_nc=1, ndf=64, n_layers=3, use_actnorm=False):
+        """Construct a PatchGAN discriminator
+        Parameters:
+            input_nc (int)  -- the number of channels in input images
+            ndf (int)       -- the number of filters in the last conv layer
+            n_layers (int)  -- the number of conv layers in the discriminator
+            norm_layer      -- normalization layer
+        """
+        super(LiDARNLayerDiscriminatorV2, self).__init__()
+        if not use_actnorm:
+            norm_layer = nn.BatchNorm2d
+        else:
+            norm_layer = ActNorm
+        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
+            use_bias = norm_layer.func != nn.BatchNorm2d
+        else:
+            use_bias = norm_layer != nn.BatchNorm2d
+
+        kw = (4, 4)
+        sequence = [CircularConv2d(input_nc, ndf, kernel_size=kw, stride=(1, 2), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True),
+                    CircularConv2d(ndf, ndf, kernel_size=kw, stride=(1, 2), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True)]
+        nf_mult = 1
+        nf_mult_prev = 1
+        for n in range(1, n_layers):  # gradually increase the number of filters
+            nf_mult_prev = nf_mult
+            nf_mult = min(2 ** n, 8)
+            sequence += [
+                CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=(2, 2), bias=use_bias, padding=(1, 2, 1, 2)),
+                norm_layer(ndf * nf_mult),
+                nn.LeakyReLU(0.2, True)
+            ]
+
+        nf_mult_prev = nf_mult
+        nf_mult = min(2 ** n_layers, 8)
+        sequence += [
+            CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, bias=use_bias, padding=(1, 2, 1, 2)),
+            norm_layer(ndf * nf_mult),
+            nn.LeakyReLU(0.2, True)
+        ]
+
+        sequence += [
+            CircularConv2d(ndf * nf_mult, output_nc, kernel_size=kw, stride=1, padding=(1, 2, 1, 2))]  # output 1 channel prediction map
+        self.main = nn.Sequential(*sequence)
+
+    def forward(self, input):
+        """Standard forward."""
+        return self.main(input)
+
+
+class LiDARNLayerDiscriminatorV3(nn.Module):
+    """Modified PatchGAN discriminator from Pix2Pix (larger receptive field)
+        --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py
+    """
+    def __init__(self, input_nc=1, output_nc=1, ndf=64, n_layers=3, use_actnorm=False):
+        """Construct a PatchGAN discriminator
+        Parameters:
+            input_nc (int)  -- the number of channels in input images
+            ndf (int)       -- the number of filters in the last conv layer
+            n_layers (int)  -- the number of conv layers in the discriminator
+            norm_layer      -- normalization layer
+        """
+        super(LiDARNLayerDiscriminatorV3, self).__init__()
+        if not use_actnorm:
+            norm_layer = nn.BatchNorm2d
+        else:
+            norm_layer = ActNorm
+        if type(norm_layer) == functools.partial:  # no need to use bias as BatchNorm2d has affine parameters
+            use_bias = norm_layer.func != nn.BatchNorm2d
+        else:
+            use_bias = norm_layer != nn.BatchNorm2d
+
+        kw = (4, 4)
+        sequence = [CircularConv2d(input_nc, ndf, kernel_size=(1, 4), stride=(1, 1), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True),
+                    CircularConv2d(ndf, ndf, kernel_size=kw, stride=(2, 2), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True)]
+        nf_mult = 1
+        nf_mult_prev = 1
+        for n in range(1, n_layers):  # gradually increase the number of filters
+            nf_mult_prev = nf_mult
+            nf_mult = min(2 ** n, 8)
+            sequence += [
+                CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=(2, 2), bias=use_bias, padding=(1, 2, 1, 2)),
+                norm_layer(ndf * nf_mult),
+                nn.LeakyReLU(0.2, True)
+            ]
+
+        nf_mult_prev = nf_mult
+        nf_mult = min(2 ** n_layers, 8)
+        sequence += [
+            CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, bias=use_bias, padding=(1, 2, 1, 2)),
+            norm_layer(ndf * nf_mult),
+            nn.LeakyReLU(0.2, True)
+        ]
+
+        sequence += [
+            CircularConv2d(ndf * nf_mult, output_nc, kernel_size=kw, stride=1, padding=(1, 2, 1, 2))]  # output 1 channel prediction map
+        self.main = nn.Sequential(*sequence)
+
+    def forward(self, input):
+        """Standard forward."""
+        import pdb; pdb.set_trace()
+        return self.main(input)
diff --git a/lidm/modules/losses/geometric.py b/lidm/modules/losses/geometric.py
new file mode 100644
index 0000000000000000000000000000000000000000..62cdc1d71da440bed0a3833c723fad3bec2fdc3d
--- /dev/null
+++ b/lidm/modules/losses/geometric.py
@@ -0,0 +1,78 @@
+from functools import partial
+
+import numpy as np
+import torch
+from torch import nn
+import torch.nn.functional as F
+
+
+class GeoConverter(nn.Module):
+    def __init__(self, curve_length=4, bev_only=False, dataset_config=dict()):
+        super().__init__()
+        self.curve_length = curve_length
+        self.coord_dim = 3 if not bev_only else 2
+        self.convert_fn = self.batch_range2bev if bev_only else self.batch_range2xyz
+
+        fov = dataset_config.fov
+        self.fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
+        self.fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
+        self.fov_range = abs(self.fov_down) + abs(self.fov_up)  # get field of view total in rad
+        self.depth_scale = dataset_config.depth_scale
+        self.depth_min, self.depth_max = dataset_config.depth_range
+        self.log_scale = dataset_config.log_scale
+        self.size = dataset_config['size']
+        self.register_conversion()
+
+    def register_conversion(self):
+        scan_x, scan_y = np.meshgrid(np.arange(self.size[1]), np.arange(self.size[0]))
+        scan_x = scan_x.astype(np.float64) / self.size[1]
+        scan_y = scan_y.astype(np.float64) / self.size[0]
+
+        yaw = (np.pi * (scan_x * 2 - 1))
+        pitch = ((1.0 - scan_y) * self.fov_range - abs(self.fov_down))
+
+        to_torch = partial(torch.tensor, dtype=torch.float32)
+
+        self.register_buffer('cos_yaw', torch.cos(to_torch(yaw)))
+        self.register_buffer('sin_yaw', torch.sin(to_torch(yaw)))
+        self.register_buffer('cos_pitch', torch.cos(to_torch(pitch)))
+        self.register_buffer('sin_pitch', torch.sin(to_torch(pitch)))
+
+    def batch_range2xyz(self, imgs):
+        batch_depth = (imgs * 0.5 + 0.5) * self.depth_scale
+        if self.log_scale:
+            batch_depth = torch.exp2(batch_depth) - 1
+        batch_depth = batch_depth.clamp(self.depth_min, self.depth_max)
+
+        batch_x = self.cos_yaw * self.cos_pitch * batch_depth
+        batch_y = -self.sin_yaw * self.cos_pitch * batch_depth
+        batch_z = self.sin_pitch * batch_depth
+        batch_xyz = torch.cat([batch_x, batch_y, batch_z], dim=1)
+
+        return batch_xyz
+
+    def batch_range2bev(self, imgs):
+        batch_depth = (imgs * 0.5 + 0.5) * self.depth_scale
+        if self.log_scale:
+            batch_depth = torch.exp2(batch_depth) - 1
+        batch_depth = batch_depth.clamp(self.depth_min, self.depth_max)
+
+        batch_x = self.cos_yaw * self.cos_pitch * batch_depth
+        batch_y = -self.sin_yaw * self.cos_pitch * batch_depth
+        batch_bev = torch.cat([batch_x, batch_y], dim=1)
+
+        return batch_bev
+
+    def curve_compress(self, batch_coord):
+        compressed_batch_coord = F.avg_pool2d(batch_coord, (1, self.curve_length))
+
+        return compressed_batch_coord
+
+    def forward(self, input):
+        input = input / 2. + .5  # [-1, 1] -> [0, 1]
+
+        input_coord = self.convert_fn(input)
+        if self.curve_length > 1:
+            input_coord = self.curve_compress(input_coord)
+
+        return input_coord
diff --git a/lidm/modules/losses/perceptual.py b/lidm/modules/losses/perceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..c1255a584194c6fdeae16b5e4df8ecf63e5224ed
--- /dev/null
+++ b/lidm/modules/losses/perceptual.py
@@ -0,0 +1,123 @@
+import hashlib
+import os
+
+import requests
+import torch
+import torch.nn as nn
+
+from tqdm import tqdm
+
+from . import l1, l2
+from ...utils.model_utils import build_model
+
+URL_MAP = {
+}
+
+CKPT_MAP = {
+}
+
+MD5_MAP = {
+}
+
+PERCEPTUAL_TYPE = {
+    'rangenet_full': [('enc_0', 32), ('enc_1', 64), ('enc_2', 128), ('enc_3', 256), ('enc_4', 512), ('enc_5', 1024),
+                      ('dec_4', 512), ('dec_3', 256), ('dec_2', 128), ('dec_1', 64), ('dec_0', 32)],
+    'rangenet_enc': [('enc_0', 32), ('enc_1', 64), ('enc_2', 128), ('enc_3', 256), ('enc_4', 512), ('enc_5', 1024)],
+    'rangenet_dec': [('dec_4', 512), ('dec_3', 256), ('dec_2', 128), ('dec_1', 64), ('dec_0', 32)],
+    'rangenet_final': [('dec_0', 32)]
+}
+
+
+def download(url, local_path, chunk_size=1024):
+    os.makedirs(os.path.split(local_path)[0], exist_ok=True)
+    with requests.get(url, stream=True) as r:
+        total_size = int(r.headers.get("content-length", 0))
+        with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
+            with open(local_path, "wb") as f:
+                for data in r.iter_content(chunk_size=chunk_size):
+                    if data:
+                        f.write(data)
+                        pbar.update(chunk_size)
+
+
+def md5_hash(path):
+    with open(path, "rb") as f:
+        content = f.read()
+    return hashlib.md5(content).hexdigest()
+
+
+def get_ckpt_path(name, root, check=False):
+    assert name in URL_MAP
+    path = os.path.join(root, CKPT_MAP[name])
+    if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
+        print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
+        download(URL_MAP[name], path)
+        md5 = md5_hash(path)
+        assert md5 == MD5_MAP[name], md5
+    return path
+
+
+class NetLinLayer(nn.Module):
+    """ A single linear layer which does a 1x1 conv """
+
+    def __init__(self, chn_in, chn_out=1, use_dropout=False):
+        super(NetLinLayer, self).__init__()
+        layers = [nn.Dropout(), ] if (use_dropout) else []
+        layers += [nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), ]
+        self.model = nn.Sequential(*layers)
+
+
+class PerceptualLoss(nn.Module):
+    def __init__(self, ptype, depth_scale, log_scale=True, use_dropout=True, lpips=False, p_loss='l1'):
+        super().__init__()
+        self.depth_scale = depth_scale
+        self.log_scale = log_scale
+
+        if p_loss == "l1":
+            self.p_loss = l1
+        else:
+            self.p_loss = l2
+
+        self.chns = PERCEPTUAL_TYPE[ptype]
+        self.return_list = [name for name, _ in self.chns]
+        self.loss_scale = [5.0, 3.39, 2.29, 1.61, 0.895]  # predefined based on the loss of each stage after a few epochs (refer )
+        self.net = build_model('kitti', 'rangenet')
+        self.lin_list = nn.ModuleList([NetLinLayer(ch, use_dropout=use_dropout) for _, ch in self.chns]) if lpips else None
+        for param in self.parameters():
+            param.requires_grad = False
+
+    @staticmethod
+    def normalize_tensor(x, eps=1e-10):
+        norm_factor = torch.sqrt(torch.sum(x ** 2, dim=1, keepdim=True))
+        return x / (norm_factor + eps)
+
+    @staticmethod
+    def spatial_average(x, keepdim=True):
+        return x.mean([2, 3], keepdim=keepdim)
+
+    def preprocess(self, *inputs):
+        assert len(inputs) == 2, 'input with both depth images and coord images'
+        depth_img, xyz_img = inputs
+
+        # scale to standard rangenet input
+        depth_img = (depth_img * 0.5 + 0.5) * self.depth_scale
+        if self.log_scale:
+            depth_img = torch.exp2(depth_img) - 1
+
+        img = torch.cat([depth_img, xyz_img], 1)
+        return img
+
+    def forward(self, target, input):
+        in0_input, in1_input = self.preprocess(*input), self.preprocess(*target)
+        outs0, outs1 = self.net(in0_input, return_list=self.return_list), self.net(in1_input, return_list=self.return_list)
+
+        val_list = []
+        for i, (name, _) in enumerate(self.chns):
+            feats0, feats1 = self.normalize_tensor(outs0[name].to(in0_input.device)), \
+                             self.normalize_tensor(outs1[name].to(in0_input.device))
+            diffs = self.p_loss(feats0, feats1)
+            res = self.lin_list[i].model(diffs) if self.lin_list is not None else diffs.mean(1, keepdim=True)
+            res = self.spatial_average(res, keepdim=True) * self.loss_scale[i]
+            val_list.append(res)
+        val = sum(val_list)
+        return val
diff --git a/lidm/modules/losses/vqperceptual.py b/lidm/modules/losses/vqperceptual.py
new file mode 100644
index 0000000000000000000000000000000000000000..e9cd7220338d6beacdf5e70108c6279c1fe18b7c
--- /dev/null
+++ b/lidm/modules/losses/vqperceptual.py
@@ -0,0 +1,176 @@
+import torch
+from torch import nn
+
+from . import weights_init, l1, l2, hinge_d_loss, vanilla_d_loss, measure_perplexity, square_dist_loss
+from .geometric import GeoConverter
+from .discriminator import NLayerDiscriminator, LiDARNLayerDiscriminator, LiDARNLayerDiscriminatorV2
+from .perceptual import PerceptualLoss
+
+VERSION2DISC = {'v0': NLayerDiscriminator, 'v1': LiDARNLayerDiscriminator, 'v2': LiDARNLayerDiscriminatorV2}
+
+
+class VQGeoLPIPSWithDiscriminator(nn.Module):
+    def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
+                 disc_num_layers=3, disc_in_channels=3, disc_out_channels=1, disc_factor=1.0, disc_weight=1.0,
+                 mask_factor=0.0, use_actnorm=False, disc_conditional=False,
+                 disc_ndf=64, disc_loss="hinge", n_classes=None, pixel_loss="l1", disc_version='v1',
+                 geo_factor=1.0, curve_length=4, perceptual_factor=1.0, perceptual_type='rangenet_final',
+                 dataset_config=dict()):
+        super().__init__()
+        assert disc_loss in ["hinge", "vanilla"]
+        assert pixel_loss in ["l1", "l2"]
+        self.codebook_weight = codebook_weight
+        self.pixel_weight = pixelloss_weight
+        self.mask_factor = mask_factor
+        self.geo_factor = geo_factor
+
+        # scale of reconstruction loss
+        self.rec_scale = 1
+        if mask_factor > 0:
+            self.rec_scale += 1.
+        if geo_factor > 0:
+            self.rec_scale += 1.
+        if perceptual_factor > 0:
+            self.rec_scale += 1.
+
+        if pixel_loss == "l1":
+            self.pixel_loss = l1
+        else:
+            self.pixel_loss = l2
+
+        self.perceptual_factor = perceptual_factor
+        if perceptual_factor > 0.:
+            print(f"{self.__class__.__name__}: Running with LPIPS.")
+            self.perceptual_loss = PerceptualLoss(perceptual_type, dataset_config.depth_scale,
+                                                  dataset_config.log_scale).eval()
+
+        disc_cls = VERSION2DISC[disc_version]
+        self.discriminator = disc_cls(input_nc=disc_in_channels,
+                                      output_nc=disc_out_channels,
+                                      n_layers=disc_num_layers,
+                                      use_actnorm=use_actnorm,
+                                      ndf=disc_ndf).apply(weights_init)
+        self.discriminator_iter_start = disc_start
+        if disc_loss == "hinge":
+            self.disc_loss = hinge_d_loss
+        elif disc_loss == "vanilla":
+            self.disc_loss = vanilla_d_loss
+        else:
+            raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
+        print(f"VQGeoLPIPSWithDiscriminator running with {disc_loss} loss.")
+        self.disc_factor = disc_factor
+        self.discriminator_weight = disc_weight
+        self.disc_conditional = disc_conditional
+        self.n_classes = n_classes
+
+        self.geometry_converter = GeoConverter(curve_length, False, dataset_config)  # force converting xyz output
+        self.geo_loss = square_dist_loss
+
+    def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
+        if last_layer is not None:
+            nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
+            g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
+        else:
+            nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
+            g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
+
+        d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
+        d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
+        d_weight = d_weight * self.discriminator_weight
+        return d_weight
+
+    def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
+                global_step, last_layer=None, cond=None, split="train", predicted_indices=None, masks=None):
+        input_coord = self.geometry_converter(inputs)
+        rec_coord = self.geometry_converter(reconstructions[:, 0:1].contiguous())
+
+        ############# Reconstruction #############
+        # pixel reconstruction loss
+        if self.mask_factor > 0 and masks is not None:
+            pixel_rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions[:, 0:1].contiguous())
+            mask_rec_loss = self.pixel_loss(masks.contiguous(), reconstructions[:, 1:2].contiguous()) * self.mask_factor
+        else:
+            pixel_rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
+            mask_rec_loss = torch.tensor(0.0)
+
+        # geometry reconstruction loss (bev)
+        if self.geo_factor > 0:
+            geo_rec_loss = self.geo_loss(input_coord[:, :2], rec_coord[:, :2]) * self.geo_factor
+        else:
+            geo_rec_loss = torch.tensor(0.0)
+
+        # perceptual loss
+        if self.perceptual_factor > 0:
+            perceptual_loss = self.perceptual_loss((inputs.contiguous(), input_coord),
+                                                   (reconstructions[:, 0:1].contiguous(), rec_coord)) * self.perceptual_factor
+        else:
+            perceptual_loss = torch.tensor(0.0)
+
+        # overall reconstruction loss
+        rec_loss = (pixel_rec_loss + mask_rec_loss + geo_rec_loss + perceptual_loss) / self.rec_scale
+        nll_loss = rec_loss
+        nll_loss = torch.mean(nll_loss)
+
+        ############# GAN #############
+        disc_factor = 0. if global_step > self.discriminator_iter_start else self.disc_factor
+        # update generator (input: img, mask, coord, [cond])
+        if optimizer_idx == 0:
+            disc_recons = reconstructions.contiguous()
+            if self.geo_factor > 0:
+                disc_recons = torch.cat((disc_recons, rec_coord[:, :2].contiguous()), dim=1)
+            if cond is not None and self.disc_conditional:
+                disc_recons = torch.cat((disc_recons, cond), dim=1)
+            logits_fake = self.discriminator(disc_recons)
+
+            # adversarial loss
+            g_loss = -torch.mean(logits_fake)
+
+            try:
+                d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
+            except RuntimeError:
+                assert not self.training
+                d_weight = torch.tensor(0.0)
+
+            loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
+
+            log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
+                   "{}/quant_loss".format(split): codebook_loss.detach().mean(),
+                   "{}/rec_loss".format(split): rec_loss.detach().mean(),
+                   "{}/pix_rec_loss".format(split): pixel_rec_loss.detach().mean(),
+                   "{}/geo_rec_loss".format(split): geo_rec_loss.detach().mean(),
+                   "{}/mask_rec_loss".format(split): mask_rec_loss.detach().mean(),
+                   "{}/perceptual_loss".format(split): perceptual_loss.detach().mean(),
+                   "{}/d_weight".format(split): d_weight.detach(),
+                   "{}/disc_factor".format(split): torch.tensor(disc_factor),
+                   "{}/g_loss".format(split): g_loss.detach().mean()}
+
+            if predicted_indices is not None:
+                assert self.n_classes is not None
+                with torch.no_grad():
+                    perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
+                log[f"{split}/perplexity"] = perplexity
+                log[f"{split}/cluster_usage"] = cluster_usage
+            return loss, log
+
+        # update discriminator (input: img, mask, coord, [cond])
+        if optimizer_idx == 1:
+            disc_inputs, disc_recons = inputs.contiguous().detach(), reconstructions.contiguous().detach()
+            if self.mask_factor > 0 and masks is not None:
+                disc_inputs = torch.cat((disc_inputs, masks.contiguous().detach()), dim=1)
+            if self.geo_factor > 0:
+                disc_inputs = torch.cat((disc_inputs, input_coord[:, :2].contiguous()), dim=1)
+                disc_recons = torch.cat((disc_recons, rec_coord[:, :2].contiguous()), dim=1)
+            if cond is not None:
+                disc_inputs = torch.cat((disc_inputs, cond), dim=1)
+                disc_recons = torch.cat((disc_recons, cond), dim=1)
+            logits_real = self.discriminator(disc_inputs)
+            logits_fake = self.discriminator(disc_recons)
+
+            # gan loss
+            d_loss = self.disc_loss(logits_real, logits_fake) * disc_factor
+
+            log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
+                   "{}/logits_real".format(split): logits_real.detach().mean(),
+                   "{}/logits_fake".format(split): logits_fake.detach().mean()}
+
+            return d_loss, log
diff --git a/lidm/modules/minkowskinet/__init__.py b/lidm/modules/minkowskinet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/modules/minkowskinet/model.py b/lidm/modules/minkowskinet/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..daa36a5009e96f3331653341c6b185627d688a19
--- /dev/null
+++ b/lidm/modules/minkowskinet/model.py
@@ -0,0 +1,141 @@
+import torch
+import torch.nn as nn
+
+try:
+    import torchsparse
+    import torchsparse.nn as spnn
+    from ..ts import basic_blocks
+except ImportError:
+    raise Exception('Required ts lib. Reference: https://github.com/mit-han-lab/torchsparse/tree/v1.4.0')
+
+
+class Model(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+
+        cr = config.model_params.cr
+        cs = config.model_params.layer_num
+        cs = [int(cr * x) for x in cs]
+
+        self.pres = self.vres = config.model_params.voxel_size
+        self.num_classes = config.model_params.num_class
+
+        self.stem = nn.Sequential(
+            spnn.Conv3d(config.model_params.input_dims, cs[0], kernel_size=3, stride=1),
+            spnn.BatchNorm(cs[0]), spnn.ReLU(True),
+            spnn.Conv3d(cs[0], cs[0], kernel_size=3, stride=1),
+            spnn.BatchNorm(cs[0]), spnn.ReLU(True))
+
+        self.stage1 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage2 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage3 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[2], cs[2], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[2], cs[3], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage4 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[3], cs[3], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[3], cs[4], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1),
+        )
+
+        self.up1 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[4], cs[5], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[5] + cs[3], cs[5], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[5], cs[5], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up2 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[5], cs[6], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[6] + cs[2], cs[6], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[6], cs[6], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up3 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[6], cs[7], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[7] + cs[1], cs[7], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[7], cs[7], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up4 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[7], cs[8], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[8] + cs[0], cs[8], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[8], cs[8], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.classifier = nn.Sequential(nn.Linear(cs[8], self.num_classes))
+
+        self.weight_initialization()
+        self.dropout = nn.Dropout(0.3, True)
+
+    def weight_initialization(self):
+        for m in self.modules():
+            if isinstance(m, nn.BatchNorm1d):
+                nn.init.constant_(m.weight, 1)
+                nn.init.constant_(m.bias, 0)
+
+    def forward(self, data_dict, return_logits=False, return_final_logits=False):
+        x = data_dict['lidar']
+        x.C = x.C.int()
+
+        x0 = self.stem(x)
+        x1 = self.stage1(x0)
+        x2 = self.stage2(x1)
+        x3 = self.stage3(x2)
+        x4 = self.stage4(x3)
+
+        if return_logits:
+            output_dict = dict()
+            output_dict['logits'] = x4.F
+            output_dict['batch_indices'] = x4.C[:, -1]
+            return output_dict
+
+        y1 = self.up1[0](x4)
+        y1 = torchsparse.cat([y1, x3])
+        y1 = self.up1[1](y1)
+
+        y2 = self.up2[0](y1)
+        y2 = torchsparse.cat([y2, x2])
+        y2 = self.up2[1](y2)
+
+        y3 = self.up3[0](y2)
+        y3 = torchsparse.cat([y3, x1])
+        y3 = self.up3[1](y3)
+
+        y4 = self.up4[0](y3)
+        y4 = torchsparse.cat([y4, x0])
+        y4 = self.up4[1](y4)
+        if return_final_logits:
+            output_dict = dict()
+            output_dict['logits'] = y4.F
+            output_dict['coords'] = y4.C[:, :3]
+            output_dict['batch_indices'] = y4.C[:, -1]
+            return output_dict
+
+        output = self.classifier(y4.F)
+        data_dict['output'] = output.F
+
+        return data_dict
diff --git a/lidm/modules/rangenet/__init__.py b/lidm/modules/rangenet/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/modules/rangenet/model.py b/lidm/modules/rangenet/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..752fae9effd476a6bff255e0063675d1cc2f72e2
--- /dev/null
+++ b/lidm/modules/rangenet/model.py
@@ -0,0 +1,372 @@
+#!/usr/bin/env python3
+# This file is covered by the LICENSE file in the root of this project.
+from collections import OrderedDict
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+
+class BasicBlock(nn.Module):
+    def __init__(self, inplanes, planes, bn_d=0.1):
+        super(BasicBlock, self).__init__()
+        self.conv1 = nn.Conv2d(inplanes, planes[0], kernel_size=1,
+                               stride=1, padding=0, bias=False)
+        self.bn1 = nn.BatchNorm2d(planes[0], momentum=bn_d)
+        self.relu1 = nn.LeakyReLU(0.1)
+        self.conv2 = nn.Conv2d(planes[0], planes[1], kernel_size=3,
+                               stride=1, padding=1, bias=False)
+        self.bn2 = nn.BatchNorm2d(planes[1], momentum=bn_d)
+        self.relu2 = nn.LeakyReLU(0.1)
+
+    def forward(self, x):
+        residual = x
+
+        out = self.conv1(x)
+        out = self.bn1(out)
+        out = self.relu1(out)
+
+        out = self.conv2(out)
+        out = self.bn2(out)
+        out = self.relu2(out)
+
+        out += residual
+        return out
+
+
+# ******************************************************************************
+
+# number of layers per model
+model_blocks = {
+    21: [1, 1, 2, 2, 1],
+    53: [1, 2, 8, 8, 4],
+}
+
+
+class Backbone(nn.Module):
+    """
+       Class for DarknetSeg. Subclasses PyTorch's own "nn" module
+    """
+
+    def __init__(self, params):
+        super(Backbone, self).__init__()
+        self.use_range = params["input_depth"]["range"]
+        self.use_xyz = params["input_depth"]["xyz"]
+        self.use_remission = params["input_depth"]["remission"]
+        self.drop_prob = params["dropout"]
+        self.bn_d = params["bn_d"]
+        self.OS = params["OS"]
+        self.layers = params["extra"]["layers"]
+
+        # input depth calc
+        self.input_depth = 0
+        self.input_idxs = []
+        if self.use_range:
+            self.input_depth += 1
+            self.input_idxs.append(0)
+        if self.use_xyz:
+            self.input_depth += 3
+            self.input_idxs.extend([1, 2, 3])
+        if self.use_remission:
+            self.input_depth += 1
+            self.input_idxs.append(4)
+
+        # stride play
+        self.strides = [2, 2, 2, 2, 2]
+        # check current stride
+        current_os = 1
+        for s in self.strides:
+            current_os *= s
+
+        # make the new stride
+        if self.OS > current_os:
+            print("Can't do OS, ", self.OS,
+                  " because it is bigger than original ", current_os)
+        else:
+            # redo strides according to needed stride
+            for i, stride in enumerate(reversed(self.strides), 0):
+                if int(current_os) != self.OS:
+                    if stride == 2:
+                        current_os /= 2
+                        self.strides[-1 - i] = 1
+                    if int(current_os) == self.OS:
+                        break
+
+        # check that darknet exists
+        assert self.layers in model_blocks.keys()
+
+        # generate layers depending on darknet type
+        self.blocks = model_blocks[self.layers]
+
+        # input layer
+        self.conv1 = nn.Conv2d(self.input_depth, 32, kernel_size=3,
+                               stride=1, padding=1, bias=False)
+        self.bn1 = nn.BatchNorm2d(32, momentum=self.bn_d)
+        self.relu1 = nn.LeakyReLU(0.1)
+
+        # encoder
+        self.enc1 = self._make_enc_layer(BasicBlock, [32, 64], self.blocks[0],
+                                         stride=self.strides[0], bn_d=self.bn_d)
+        self.enc2 = self._make_enc_layer(BasicBlock, [64, 128], self.blocks[1],
+                                         stride=self.strides[1], bn_d=self.bn_d)
+        self.enc3 = self._make_enc_layer(BasicBlock, [128, 256], self.blocks[2],
+                                         stride=self.strides[2], bn_d=self.bn_d)
+        self.enc4 = self._make_enc_layer(BasicBlock, [256, 512], self.blocks[3],
+                                         stride=self.strides[3], bn_d=self.bn_d)
+        self.enc5 = self._make_enc_layer(BasicBlock, [512, 1024], self.blocks[4],
+                                         stride=self.strides[4], bn_d=self.bn_d)
+
+        # for a bit of fun
+        self.dropout = nn.Dropout2d(self.drop_prob)
+
+        # last channels
+        self.last_channels = 1024
+
+    # make layer useful function
+    def _make_enc_layer(self, block, planes, blocks, stride, bn_d=0.1):
+        layers = []
+
+        #  downsample
+        layers.append(("conv", nn.Conv2d(planes[0], planes[1],
+                                         kernel_size=3,
+                                         stride=[1, stride], dilation=1,
+                                         padding=1, bias=False)))
+        layers.append(("bn", nn.BatchNorm2d(planes[1], momentum=bn_d)))
+        layers.append(("relu", nn.LeakyReLU(0.1)))
+
+        #  blocks
+        inplanes = planes[1]
+        for i in range(0, blocks):
+            layers.append(("residual_{}".format(i),
+                           block(inplanes, planes, bn_d)))
+
+        return nn.Sequential(OrderedDict(layers))
+
+    def run_layer(self, x, layer, skips, os):
+        y = layer(x)
+        if y.shape[2] < x.shape[2] or y.shape[3] < x.shape[3]:
+            skips[os] = x.detach()
+            os *= 2
+        x = y
+        return x, skips, os
+
+    def forward(self, x, return_logits=False, return_list=None):
+        # filter input
+        x = x[:, self.input_idxs]
+
+        # run cnn
+        # store for skip connections
+        skips = {}
+        out_dict = {}
+        os = 1
+
+        # first layer
+        x, skips, os = self.run_layer(x, self.conv1, skips, os)
+        x, skips, os = self.run_layer(x, self.bn1, skips, os)
+        x, skips, os = self.run_layer(x, self.relu1, skips, os)
+        if return_list and 'enc_0' in return_list:
+            out_dict['enc_0'] = x.detach().cpu()  # 32, 64, 1024
+
+        # all encoder blocks with intermediate dropouts
+        x, skips, os = self.run_layer(x, self.enc1, skips, os)
+        if return_list and 'enc_1' in return_list:
+            out_dict['enc_1'] = x.detach().cpu()  # 64, 64, 512
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        x, skips, os = self.run_layer(x, self.enc2, skips, os)
+        if return_list and 'enc_2' in return_list:
+            out_dict['enc_2'] = x.detach().cpu()  # 128, 64, 256
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        x, skips, os = self.run_layer(x, self.enc3, skips, os)
+        if return_list and 'enc_3' in return_list:
+            out_dict['enc_3'] = x.detach().cpu()  # 256, 64, 128
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        x, skips, os = self.run_layer(x, self.enc4, skips, os)
+        if return_list and 'enc_4' in return_list:
+            out_dict['enc_4'] = x.detach().cpu()  # 512, 64, 64
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        x, skips, os = self.run_layer(x, self.enc5, skips, os)
+        if return_list and 'enc_5' in return_list:
+            out_dict['enc_5'] = x.detach().cpu()  # 1024, 64, 32
+        if return_logits:
+            return x
+
+        x, skips, os = self.run_layer(x, self.dropout, skips, os)
+
+        if return_list is not None:
+            return x, skips, out_dict
+        return x, skips
+
+    def get_last_depth(self):
+        return self.last_channels
+
+    def get_input_depth(self):
+        return self.input_depth
+
+
+class Decoder(nn.Module):
+    """
+       Class for DarknetSeg. Subclasses PyTorch's own "nn" module
+    """
+
+    def __init__(self, params, OS=32, feature_depth=1024):
+        super(Decoder, self).__init__()
+        self.backbone_OS = OS
+        self.backbone_feature_depth = feature_depth
+        self.drop_prob = params["dropout"]
+        self.bn_d = params["bn_d"]
+        self.index = 0
+
+        # stride play
+        self.strides = [2, 2, 2, 2, 2]
+        # check current stride
+        current_os = 1
+        for s in self.strides:
+            current_os *= s
+        # redo strides according to needed stride
+        for i, stride in enumerate(self.strides):
+            if int(current_os) != self.backbone_OS:
+                if stride == 2:
+                    current_os /= 2
+                    self.strides[i] = 1
+                if int(current_os) == self.backbone_OS:
+                    break
+
+        # decoder
+        self.dec5 = self._make_dec_layer(BasicBlock,
+                                         [self.backbone_feature_depth, 512],
+                                         bn_d=self.bn_d,
+                                         stride=self.strides[0])
+        self.dec4 = self._make_dec_layer(BasicBlock, [512, 256], bn_d=self.bn_d,
+                                         stride=self.strides[1])
+        self.dec3 = self._make_dec_layer(BasicBlock, [256, 128], bn_d=self.bn_d,
+                                         stride=self.strides[2])
+        self.dec2 = self._make_dec_layer(BasicBlock, [128, 64], bn_d=self.bn_d,
+                                         stride=self.strides[3])
+        self.dec1 = self._make_dec_layer(BasicBlock, [64, 32], bn_d=self.bn_d,
+                                         stride=self.strides[4])
+
+        # layer list to execute with skips
+        self.layers = [self.dec5, self.dec4, self.dec3, self.dec2, self.dec1]
+
+        # for a bit of fun
+        self.dropout = nn.Dropout2d(self.drop_prob)
+
+        # last channels
+        self.last_channels = 32
+
+    def _make_dec_layer(self, block, planes, bn_d=0.1, stride=2):
+        layers = []
+
+        #  downsample
+        if stride == 2:
+            layers.append(("upconv", nn.ConvTranspose2d(planes[0], planes[1],
+                                                        kernel_size=[1, 4], stride=[1, 2],
+                                                        padding=[0, 1])))
+        else:
+            layers.append(("conv", nn.Conv2d(planes[0], planes[1],
+                                             kernel_size=3, padding=1)))
+        layers.append(("bn", nn.BatchNorm2d(planes[1], momentum=bn_d)))
+        layers.append(("relu", nn.LeakyReLU(0.1)))
+
+        #  blocks
+        layers.append(("residual", block(planes[1], planes, bn_d)))
+
+        return nn.Sequential(OrderedDict(layers))
+
+    def run_layer(self, x, layer, skips, os):
+        feats = layer(x)  # up
+        if feats.shape[-1] > x.shape[-1]:
+            os //= 2  # match skip
+            feats = feats + skips[os].detach()  # add skip
+        x = feats
+        return x, skips, os
+
+    def forward(self, x, skips, return_logits=False, return_list=None):
+        os = self.backbone_OS
+        out_dict = {}
+
+        # run layers
+        x, skips, os = self.run_layer(x, self.dec5, skips, os)
+        if return_list and 'dec_4' in return_list:
+            out_dict['dec_4'] = x.detach().cpu()  # 512, 64, 64
+        x, skips, os = self.run_layer(x, self.dec4, skips, os)
+        if return_list and 'dec_3' in return_list:
+            out_dict['dec_3'] = x.detach().cpu()  # 256, 64, 128
+        x, skips, os = self.run_layer(x, self.dec3, skips, os)
+        if return_list and 'dec_2' in return_list:
+            out_dict['dec_2'] = x.detach().cpu()  # 128, 64, 256
+        x, skips, os = self.run_layer(x, self.dec2, skips, os)
+        if return_list and 'dec_1' in return_list:
+            out_dict['dec_1'] = x.detach().cpu()  # 64, 64, 512
+        x, skips, os = self.run_layer(x, self.dec1, skips, os)
+        if return_list and 'dec_0' in return_list:
+            out_dict['dec_0'] = x.detach().cpu()  # 32, 64, 1024
+
+        logits = torch.clone(x).detach()
+        x = self.dropout(x)
+
+        if return_logits:
+            return x, logits
+        if return_list is not None:
+            return out_dict
+        return x
+
+    def get_last_depth(self):
+        return self.last_channels
+
+
+class Model(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        self.config = config
+        self.backbone = Backbone(params=self.config["backbone"])
+        self.decoder = Decoder(params=self.config["decoder"], OS=self.config["backbone"]["OS"],
+                               feature_depth=self.backbone.get_last_depth())
+
+    def load_pretrained_weights(self, path):
+        w_dict = torch.load(path + "/backbone",
+                            map_location=lambda storage, loc: storage)
+        self.backbone.load_state_dict(w_dict, strict=True)
+        w_dict = torch.load(path + "/segmentation_decoder",
+                            map_location=lambda storage, loc: storage)
+        self.decoder.load_state_dict(w_dict, strict=True)
+
+    def forward(self, x, return_logits=False, return_final_logits=False, return_list=None, agg_type='depth'):
+        if return_logits:
+            logits = self.backbone(x, return_logits)
+            logits = F.adaptive_avg_pool2d(logits, (1, 1)).squeeze()
+            logits = torch.clone(logits).detach().cpu().numpy()
+            return logits
+        elif return_list is not None:
+            x, skips, enc_dict = self.backbone(x, return_list=return_list)
+            dec_dict = self.decoder(x, skips, return_list=return_list)
+            out_dict = {**enc_dict, **dec_dict}
+            return out_dict
+        elif return_final_logits:
+            assert agg_type in ['all', 'sector', 'depth']
+            y, skips = self.backbone(x)
+            y, logits = self.decoder(y, skips, True)
+
+            B, C, H, W = logits.shape
+            N = 16
+
+            # avg all
+            if agg_type == 'all':
+                logits = logits.mean([2, 3])
+            # avg in patch
+            elif agg_type == 'sector':
+                logits = logits.view(B, C, H, N, W // N).mean([2, 4]).reshape(B, -1)
+            # avg in row
+            elif agg_type == 'depth':
+                logits = logits.view(B, C, N, H // N, W).mean([3, 4]).reshape(B, -1)
+
+            logits = torch.clone(logits).detach().cpu().numpy()
+            return logits
+        else:
+            y, skips = self.backbone(x)
+            y = self.decoder(y, skips, False)
+            return y
diff --git a/lidm/modules/spvcnn/__init__.py b/lidm/modules/spvcnn/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/modules/spvcnn/model.py b/lidm/modules/spvcnn/model.py
new file mode 100644
index 0000000000000000000000000000000000000000..dd7793f8e81cef35f331c0c2c70062023999e83a
--- /dev/null
+++ b/lidm/modules/spvcnn/model.py
@@ -0,0 +1,179 @@
+import torch.nn as nn
+
+try:
+    import torchsparse
+    import torchsparse.nn as spnn
+    from torchsparse import PointTensor
+    from ..ts.utils import initial_voxelize, point_to_voxel, voxel_to_point
+    from ..ts import basic_blocks
+except ImportError:
+    raise Exception('Required torchsparse lib. Reference: https://github.com/mit-han-lab/torchsparse/tree/v1.4.0')
+
+
+class Model(nn.Module):
+    def __init__(self, config):
+        super().__init__()
+        cr = config.model_params.cr
+        cs = config.model_params.layer_num
+        cs = [int(cr * x) for x in cs]
+
+        self.pres = self.vres = config.model_params.voxel_size
+        self.num_classes = config.model_params.num_class
+
+        self.stem = nn.Sequential(
+            spnn.Conv3d(config.model_params.input_dims, cs[0], kernel_size=3, stride=1),
+            spnn.BatchNorm(cs[0]), spnn.ReLU(True),
+            spnn.Conv3d(cs[0], cs[0], kernel_size=3, stride=1),
+            spnn.BatchNorm(cs[0]), spnn.ReLU(True))
+
+        self.stage1 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage2 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage3 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[2], cs[2], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[2], cs[3], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1),
+        )
+
+        self.stage4 = nn.Sequential(
+            basic_blocks.BasicConvolutionBlock(cs[3], cs[3], ks=2, stride=2, dilation=1),
+            basic_blocks.ResidualBlock(cs[3], cs[4], ks=3, stride=1, dilation=1),
+            basic_blocks.ResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1),
+        )
+
+        self.up1 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[4], cs[5], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[5] + cs[3], cs[5], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[5], cs[5], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up2 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[5], cs[6], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[6] + cs[2], cs[6], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[6], cs[6], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up3 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[6], cs[7], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[7] + cs[1], cs[7], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[7], cs[7], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.up4 = nn.ModuleList([
+            basic_blocks.BasicDeconvolutionBlock(cs[7], cs[8], ks=2, stride=2),
+            nn.Sequential(
+                basic_blocks.ResidualBlock(cs[8] + cs[0], cs[8], ks=3, stride=1,
+                                           dilation=1),
+                basic_blocks.ResidualBlock(cs[8], cs[8], ks=3, stride=1, dilation=1),
+            )
+        ])
+
+        self.classifier = nn.Sequential(nn.Linear(cs[8], self.num_classes))
+
+        self.point_transforms = nn.ModuleList([
+            nn.Sequential(
+                nn.Linear(cs[0], cs[4]),
+                nn.BatchNorm1d(cs[4]),
+                nn.ReLU(True),
+            ),
+            nn.Sequential(
+                nn.Linear(cs[4], cs[6]),
+                nn.BatchNorm1d(cs[6]),
+                nn.ReLU(True),
+            ),
+            nn.Sequential(
+                nn.Linear(cs[6], cs[8]),
+                nn.BatchNorm1d(cs[8]),
+                nn.ReLU(True),
+            )
+        ])
+
+        self.weight_initialization()
+        self.dropout = nn.Dropout(0.3, True)
+
+    def weight_initialization(self):
+        for m in self.modules():
+            if isinstance(m, nn.BatchNorm1d):
+                nn.init.constant_(m.weight, 1)
+                nn.init.constant_(m.bias, 0)
+
+    def forward(self, data_dict, return_logits=False, return_final_logits=False):
+        x = data_dict['lidar']
+
+        # x: SparseTensor z: PointTensor
+        z = PointTensor(x.F, x.C.float())
+
+        x0 = initial_voxelize(z, self.pres, self.vres)
+
+        x0 = self.stem(x0)
+        z0 = voxel_to_point(x0, z, nearest=False)
+        z0.F = z0.F
+
+        x1 = point_to_voxel(x0, z0)
+        x1 = self.stage1(x1)
+        x2 = self.stage2(x1)
+        x3 = self.stage3(x2)
+        x4 = self.stage4(x3)
+        z1 = voxel_to_point(x4, z0)
+        z1.F = z1.F + self.point_transforms[0](z0.F)
+
+        y1 = point_to_voxel(x4, z1)
+
+        if return_logits:
+            output_dict = dict()
+            output_dict['logits'] = y1.F
+            output_dict['batch_indices'] = y1.C[:, -1]
+            return output_dict
+
+        y1.F = self.dropout(y1.F)
+        y1 = self.up1[0](y1)
+        y1 = torchsparse.cat([y1, x3])
+        y1 = self.up1[1](y1)
+
+        y2 = self.up2[0](y1)
+        y2 = torchsparse.cat([y2, x2])
+        y2 = self.up2[1](y2)
+        z2 = voxel_to_point(y2, z1)
+        z2.F = z2.F + self.point_transforms[1](z1.F)
+
+        y3 = point_to_voxel(y2, z2)
+        y3.F = self.dropout(y3.F)
+        y3 = self.up3[0](y3)
+        y3 = torchsparse.cat([y3, x1])
+        y3 = self.up3[1](y3)
+
+        y4 = self.up4[0](y3)
+        y4 = torchsparse.cat([y4, x0])
+        y4 = self.up4[1](y4)
+        z3 = voxel_to_point(y4, z2)
+        z3.F = z3.F + self.point_transforms[2](z2.F)
+
+        if return_final_logits:
+            output_dict = dict()
+            output_dict['logits'] = z3.F
+            output_dict['coords'] = z3.C[:, :3]
+            output_dict['batch_indices'] = z3.C[:, -1].long()
+            return output_dict
+
+        # output = self.classifier(z3.F)
+        data_dict['logits'] = z3.F
+
+        return data_dict
diff --git a/lidm/modules/ts/__init__.py b/lidm/modules/ts/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/modules/ts/basic_blocks.py b/lidm/modules/ts/basic_blocks.py
new file mode 100644
index 0000000000000000000000000000000000000000..15720f7ce0a39aa147367cb53b88e04386499a43
--- /dev/null
+++ b/lidm/modules/ts/basic_blocks.py
@@ -0,0 +1,75 @@
+#!/usr/bin/env python
+# encoding: utf-8
+'''
+@author: Xu Yan
+@file: basic_blocks.py
+@time: 2021/4/14 22:53
+'''
+import torch.nn as nn
+import torchsparse.nn as spnn
+
+
+class BasicConvolutionBlock(nn.Module):
+    def __init__(self, inc, outc, ks=3, stride=1, dilation=1):
+        super().__init__()
+        self.net = nn.Sequential(
+            spnn.Conv3d(
+                inc,
+                outc,
+                kernel_size=ks,
+                dilation=dilation,
+                stride=stride), spnn.BatchNorm(outc),
+            spnn.ReLU(True))
+
+    def forward(self, x):
+        out = self.net(x)
+        return out
+
+
+class BasicDeconvolutionBlock(nn.Module):
+    def __init__(self, inc, outc, ks=3, stride=1):
+        super().__init__()
+        self.net = nn.Sequential(
+            spnn.Conv3d(
+                inc,
+                outc,
+                kernel_size=ks,
+                stride=stride,
+                transposed=True),
+            spnn.BatchNorm(outc),
+            spnn.ReLU(True))
+
+    def forward(self, x):
+        return self.net(x)
+
+
+class ResidualBlock(nn.Module):
+    def __init__(self, inc, outc, ks=3, stride=1, dilation=1):
+        super().__init__()
+        self.net = nn.Sequential(
+            spnn.Conv3d(
+                inc,
+                outc,
+                kernel_size=ks,
+                dilation=dilation,
+                stride=stride), spnn.BatchNorm(outc),
+            spnn.ReLU(True),
+            spnn.Conv3d(
+                outc,
+                outc,
+                kernel_size=ks,
+                dilation=dilation,
+                stride=1),
+            spnn.BatchNorm(outc))
+
+        self.downsample = nn.Sequential() if (inc == outc and stride == 1) else \
+            nn.Sequential(
+                spnn.Conv3d(inc, outc, kernel_size=1, dilation=1, stride=stride),
+                spnn.BatchNorm(outc)
+            )
+
+        self.ReLU = spnn.ReLU(True)
+
+    def forward(self, x):
+        out = self.ReLU(self.net(x) + self.downsample(x))
+        return out
diff --git a/lidm/modules/ts/utils.py b/lidm/modules/ts/utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..77e5e055ce584c5b09bee5857166a950c597ee0d
--- /dev/null
+++ b/lidm/modules/ts/utils.py
@@ -0,0 +1,86 @@
+import torch
+import torchsparse.nn.functional as F
+from torchsparse import PointTensor, SparseTensor
+from torchsparse.nn.utils import get_kernel_offsets
+
+__all__ = ['initial_voxelize', 'point_to_voxel', 'voxel_to_point']
+
+
+# z: PointTensor
+# return: SparseTensor
+def initial_voxelize(z, init_res, after_res):
+    new_float_coord = torch.cat([(z.C[:, :3] * init_res) / after_res, z.C[:, -1].view(-1, 1)], 1)
+
+    pc_hash = F.sphash(torch.floor(new_float_coord).int())
+    sparse_hash = torch.unique(pc_hash)
+    idx_query = F.sphashquery(pc_hash, sparse_hash)
+    counts = F.spcount(idx_query.int(), len(sparse_hash))
+
+    inserted_coords = F.spvoxelize(torch.floor(new_float_coord), idx_query, counts)
+    inserted_coords = torch.round(inserted_coords).int()
+    inserted_feat = F.spvoxelize(z.F, idx_query, counts)
+
+    new_tensor = SparseTensor(inserted_feat, inserted_coords, 1)
+    new_tensor.cmaps.setdefault(new_tensor.stride, new_tensor.coords)
+    z.additional_features['idx_query'][1] = idx_query
+    z.additional_features['counts'][1] = counts
+    z.C = new_float_coord
+
+    return new_tensor
+
+
+# x: SparseTensor, z: PointTensor
+# return: SparseTensor
+def point_to_voxel(x, z):
+    if z.additional_features is None or \
+            z.additional_features.get('idx_query') is None or \
+            z.additional_features['idx_query'].get(x.s) is None:
+        pc_hash = F.sphash(
+            torch.cat([torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0], z.C[:, -1].int().view(-1, 1)], 1))
+        sparse_hash = F.sphash(x.C)
+        idx_query = F.sphashquery(pc_hash, sparse_hash)
+        counts = F.spcount(idx_query.int(), x.C.shape[0])
+        z.additional_features['idx_query'][x.s] = idx_query
+        z.additional_features['counts'][x.s] = counts
+    else:
+        idx_query = z.additional_features['idx_query'][x.s]
+        counts = z.additional_features['counts'][x.s]
+
+    inserted_feat = F.spvoxelize(z.F, idx_query, counts)
+    new_tensor = SparseTensor(inserted_feat, x.C, x.s)
+    new_tensor.cmaps = x.cmaps
+    new_tensor.kmaps = x.kmaps
+
+    return new_tensor
+
+
+# x: SparseTensor, z: PointTensor
+# return: PointTensor
+def voxel_to_point(x, z, nearest=False):
+    if z.idx_query is None or z.weights is None or z.idx_query.get(x.s) is None or z.weights.get(x.s) is None:
+        off = get_kernel_offsets(2, x.s, 1, device=z.F.device)
+        old_hash = F.sphash(
+            torch.cat([
+                torch.floor(z.C[:, :3] / x.s[0]).int() * x.s[0],
+                z.C[:, -1].int().view(-1, 1)], 1), off)
+        pc_hash = F.sphash(x.C.to(z.F.device))
+        idx_query = F.sphashquery(old_hash, pc_hash)
+        weights = F.calc_ti_weights(z.C, idx_query, scale=x.s[0]).transpose(0, 1).contiguous()
+        idx_query = idx_query.transpose(0, 1).contiguous()
+        if nearest:
+            weights[:, 1:] = 0.
+            idx_query[:, 1:] = -1
+        new_feat = F.spdevoxelize(x.F, idx_query, weights)
+        new_tensor = PointTensor(new_feat, z.C, idx_query=z.idx_query, weights=z.weights)
+        new_tensor.additional_features = z.additional_features
+        new_tensor.idx_query[x.s] = idx_query
+        new_tensor.weights[x.s] = weights
+        z.idx_query[x.s] = idx_query
+        z.weights[x.s] = weights
+
+    else:
+        new_feat = F.spdevoxelize(x.F, z.idx_query.get(x.s), z.weights.get(x.s))
+        new_tensor = PointTensor(new_feat, z.C, idx_query=z.idx_query, weights=z.weights)
+        new_tensor.additional_features = z.additional_features
+
+    return new_tensor
\ No newline at end of file
diff --git a/lidm/modules/x_transformer.py b/lidm/modules/x_transformer.py
new file mode 100644
index 0000000000000000000000000000000000000000..3b969b4e904a4f8ecfcdb4b561ad62c24bff087f
--- /dev/null
+++ b/lidm/modules/x_transformer.py
@@ -0,0 +1,642 @@
+"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
+import torch
+from torch import nn, einsum
+import torch.nn.functional as F
+from functools import partial
+from inspect import isfunction
+from collections import namedtuple
+from einops import rearrange, repeat, reduce
+
+# constants
+
+DEFAULT_DIM_HEAD = 64
+
+Intermediates = namedtuple('Intermediates', [
+    'pre_softmax_attn',
+    'post_softmax_attn'
+])
+
+LayerIntermediates = namedtuple('Intermediates', [
+    'hiddens',
+    'attn_intermediates'
+])
+
+
+class AbsolutePositionalEmbedding(nn.Module):
+    def __init__(self, dim, max_seq_len):
+        super().__init__()
+        self.emb = nn.Embedding(max_seq_len, dim)
+        self.init_()
+
+    def init_(self):
+        nn.init.normal_(self.emb.weight, std=0.02)
+
+    def forward(self, x):
+        n = torch.arange(x.shape[1], device=x.device)
+        return self.emb(n)[None, :, :]
+
+
+class FixedPositionalEmbedding(nn.Module):
+    def __init__(self, dim):
+        super().__init__()
+        inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
+        self.register_buffer('inv_freq', inv_freq)
+
+    def forward(self, x, seq_dim=1, offset=0):
+        t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
+        sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
+        emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
+        return emb[None, :, :]
+
+
+# helpers
+
+def exists(val):
+    return val is not None
+
+
+def default(val, d):
+    if exists(val):
+        return val
+    return d() if isfunction(d) else d
+
+
+def always(val):
+    def inner(*args, **kwargs):
+        return val
+
+    return inner
+
+
+def not_equals(val):
+    def inner(x):
+        return x != val
+
+    return inner
+
+
+def equals(val):
+    def inner(x):
+        return x == val
+
+    return inner
+
+
+def max_neg_value(tensor):
+    return -torch.finfo(tensor.dtype).max
+
+
+# keyword argument helpers
+
+def pick_and_pop(keys, d):
+    values = list(map(lambda key: d.pop(key), keys))
+    return dict(zip(keys, values))
+
+
+def group_dict_by_key(cond, d):
+    return_val = [dict(), dict()]
+    for key in d.keys():
+        match = bool(cond(key))
+        ind = int(not match)
+        return_val[ind][key] = d[key]
+    return (*return_val,)
+
+
+def string_begins_with(prefix, str):
+    return str.startswith(prefix)
+
+
+def group_by_key_prefix(prefix, d):
+    return group_dict_by_key(partial(string_begins_with, prefix), d)
+
+
+def groupby_prefix_and_trim(prefix, d):
+    kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
+    kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
+    return kwargs_without_prefix, kwargs
+
+
+# classes
+class Scale(nn.Module):
+    def __init__(self, value, fn):
+        super().__init__()
+        self.value = value
+        self.fn = fn
+
+    def forward(self, x, **kwargs):
+        x, *rest = self.fn(x, **kwargs)
+        return (x * self.value, *rest)
+
+
+class Rezero(nn.Module):
+    def __init__(self, fn):
+        super().__init__()
+        self.fn = fn
+        self.g = nn.Parameter(torch.zeros(1))
+
+    def forward(self, x, **kwargs):
+        x, *rest = self.fn(x, **kwargs)
+        return (x * self.g, *rest)
+
+
+class ScaleNorm(nn.Module):
+    def __init__(self, dim, eps=1e-5):
+        super().__init__()
+        self.scale = dim ** -0.5
+        self.eps = eps
+        self.g = nn.Parameter(torch.ones(1))
+
+    def forward(self, x):
+        norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+        return x / norm.clamp(min=self.eps) * self.g
+
+
+class RMSNorm(nn.Module):
+    def __init__(self, dim, eps=1e-8):
+        super().__init__()
+        self.scale = dim ** -0.5
+        self.eps = eps
+        self.g = nn.Parameter(torch.ones(dim))
+
+    def forward(self, x):
+        norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
+        return x / norm.clamp(min=self.eps) * self.g
+
+
+class Residual(nn.Module):
+    def forward(self, x, residual):
+        return x + residual
+
+
+class GRUGating(nn.Module):
+    def __init__(self, dim):
+        super().__init__()
+        self.gru = nn.GRUCell(dim, dim)
+
+    def forward(self, x, residual):
+        gated_output = self.gru(
+            rearrange(x, 'b n d -> (b n) d'),
+            rearrange(residual, 'b n d -> (b n) d')
+        )
+
+        return gated_output.reshape_as(x)
+
+
+# feedforward
+
+class GEGLU(nn.Module):
+    def __init__(self, dim_in, dim_out):
+        super().__init__()
+        self.proj = nn.Linear(dim_in, dim_out * 2)
+
+    def forward(self, x):
+        x, gate = self.proj(x).chunk(2, dim=-1)
+        return x * F.gelu(gate)
+
+
+class FeedForward(nn.Module):
+    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
+        super().__init__()
+        inner_dim = int(dim * mult)
+        dim_out = default(dim_out, dim)
+        project_in = nn.Sequential(
+            nn.Linear(dim, inner_dim),
+            nn.GELU()
+        ) if not glu else GEGLU(dim, inner_dim)
+
+        self.net = nn.Sequential(
+            project_in,
+            nn.Dropout(dropout),
+            nn.Linear(inner_dim, dim_out)
+        )
+
+    def forward(self, x):
+        return self.net(x)
+
+
+# attention.
+class Attention(nn.Module):
+    def __init__(
+            self,
+            dim,
+            dim_head=DEFAULT_DIM_HEAD,
+            heads=8,
+            causal=False,
+            mask=None,
+            talking_heads=False,
+            sparse_topk=None,
+            use_entmax15=False,
+            num_mem_kv=0,
+            dropout=0.,
+            on_attn=False
+    ):
+        super().__init__()
+        if use_entmax15:
+            raise NotImplementedError("Check out entmax activation instead of softmax activation!")
+        self.scale = dim_head ** -0.5
+        self.heads = heads
+        self.causal = causal
+        self.mask = mask
+
+        inner_dim = dim_head * heads
+
+        self.to_q = nn.Linear(dim, inner_dim, bias=False)
+        self.to_k = nn.Linear(dim, inner_dim, bias=False)
+        self.to_v = nn.Linear(dim, inner_dim, bias=False)
+        self.dropout = nn.Dropout(dropout)
+
+        # talking heads
+        self.talking_heads = talking_heads
+        if talking_heads:
+            self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+            self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
+
+        # explicit topk sparse attention
+        self.sparse_topk = sparse_topk
+
+        # entmax
+        # self.attn_fn = entmax15 if use_entmax15 else F.softmax
+        self.attn_fn = F.softmax
+
+        # add memory key / values
+        self.num_mem_kv = num_mem_kv
+        if num_mem_kv > 0:
+            self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+            self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
+
+        # attention on attention
+        self.attn_on_attn = on_attn
+        self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
+
+    def forward(
+            self,
+            x,
+            context=None,
+            mask=None,
+            context_mask=None,
+            rel_pos=None,
+            sinusoidal_emb=None,
+            prev_attn=None,
+            mem=None
+    ):
+        b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
+        kv_input = default(context, x)
+
+        q_input = x
+        k_input = kv_input
+        v_input = kv_input
+
+        if exists(mem):
+            k_input = torch.cat((mem, k_input), dim=-2)
+            v_input = torch.cat((mem, v_input), dim=-2)
+
+        if exists(sinusoidal_emb):
+            # in shortformer, the query would start at a position offset depending on the past cached memory
+            offset = k_input.shape[-2] - q_input.shape[-2]
+            q_input = q_input + sinusoidal_emb(q_input, offset=offset)
+            k_input = k_input + sinusoidal_emb(k_input)
+
+        q = self.to_q(q_input)
+        k = self.to_k(k_input)
+        v = self.to_v(v_input)
+
+        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
+
+        input_mask = None
+        if any(map(exists, (mask, context_mask))):
+            q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
+            k_mask = q_mask if not exists(context) else context_mask
+            k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
+            q_mask = rearrange(q_mask, 'b i -> b () i ()')
+            k_mask = rearrange(k_mask, 'b j -> b () () j')
+            input_mask = q_mask * k_mask
+
+        if self.num_mem_kv > 0:
+            mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
+            k = torch.cat((mem_k, k), dim=-2)
+            v = torch.cat((mem_v, v), dim=-2)
+            if exists(input_mask):
+                input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
+
+        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
+        mask_value = max_neg_value(dots)
+
+        if exists(prev_attn):
+            dots = dots + prev_attn
+
+        pre_softmax_attn = dots
+
+        if talking_heads:
+            dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
+
+        if exists(rel_pos):
+            dots = rel_pos(dots)
+
+        if exists(input_mask):
+            dots.masked_fill_(~input_mask, mask_value)
+            del input_mask
+
+        if self.causal:
+            i, j = dots.shape[-2:]
+            r = torch.arange(i, device=device)
+            mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
+            mask = F.pad(mask, (j - i, 0), value=False)
+            dots.masked_fill_(mask, mask_value)
+            del mask
+
+        if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
+            top, _ = dots.topk(self.sparse_topk, dim=-1)
+            vk = top[..., -1].unsqueeze(-1).expand_as(dots)
+            mask = dots < vk
+            dots.masked_fill_(mask, mask_value)
+            del mask
+
+        attn = self.attn_fn(dots, dim=-1)
+        post_softmax_attn = attn
+
+        attn = self.dropout(attn)
+
+        if talking_heads:
+            attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
+
+        out = einsum('b h i j, b h j d -> b h i d', attn, v)
+        out = rearrange(out, 'b h n d -> b n (h d)')
+
+        intermediates = Intermediates(
+            pre_softmax_attn=pre_softmax_attn,
+            post_softmax_attn=post_softmax_attn
+        )
+
+        return self.to_out(out), intermediates
+
+
+class AttentionLayers(nn.Module):
+    def __init__(
+            self,
+            dim,
+            depth,
+            heads=8,
+            causal=False,
+            cross_attend=False,
+            only_cross=False,
+            use_scalenorm=False,
+            use_rmsnorm=False,
+            use_rezero=False,
+            rel_pos_num_buckets=32,
+            rel_pos_max_distance=128,
+            position_infused_attn=False,
+            custom_layers=None,
+            sandwich_coef=None,
+            par_ratio=None,
+            residual_attn=False,
+            cross_residual_attn=False,
+            macaron=False,
+            pre_norm=True,
+            gate_residual=False,
+            **kwargs
+    ):
+        super().__init__()
+        ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
+        attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
+
+        dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
+
+        self.dim = dim
+        self.depth = depth
+        self.layers = nn.ModuleList([])
+
+        self.has_pos_emb = position_infused_attn
+        self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
+        self.rotary_pos_emb = always(None)
+
+        assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
+        self.rel_pos = None
+
+        self.pre_norm = pre_norm
+
+        self.residual_attn = residual_attn
+        self.cross_residual_attn = cross_residual_attn
+
+        norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
+        norm_class = RMSNorm if use_rmsnorm else norm_class
+        norm_fn = partial(norm_class, dim)
+
+        norm_fn = nn.Identity if use_rezero else norm_fn
+        branch_fn = Rezero if use_rezero else None
+
+        if cross_attend and not only_cross:
+            default_block = ('a', 'c', 'f')
+        elif cross_attend and only_cross:
+            default_block = ('c', 'f')
+        else:
+            default_block = ('a', 'f')
+
+        if macaron:
+            default_block = ('f',) + default_block
+
+        if exists(custom_layers):
+            layer_types = custom_layers
+        elif exists(par_ratio):
+            par_depth = depth * len(default_block)
+            assert 1 < par_ratio <= par_depth, 'par ratio out of range'
+            default_block = tuple(filter(not_equals('f'), default_block))
+            par_attn = par_depth // par_ratio
+            depth_cut = par_depth * 2 // 3  # 2 / 3 attention layer cutoff suggested by PAR paper
+            par_width = (depth_cut + depth_cut // par_attn) // par_attn
+            assert len(default_block) <= par_width, 'default block is too large for par_ratio'
+            par_block = default_block + ('f',) * (par_width - len(default_block))
+            par_head = par_block * par_attn
+            layer_types = par_head + ('f',) * (par_depth - len(par_head))
+        elif exists(sandwich_coef):
+            assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
+            layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
+        else:
+            layer_types = default_block * depth
+
+        self.layer_types = layer_types
+        self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
+
+        for layer_type in self.layer_types:
+            if layer_type == 'a':
+                layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
+            elif layer_type == 'c':
+                layer = Attention(dim, heads=heads, **attn_kwargs)
+            elif layer_type == 'f':
+                layer = FeedForward(dim, **ff_kwargs)
+                layer = layer if not macaron else Scale(0.5, layer)
+            else:
+                raise Exception(f'invalid layer type {layer_type}')
+
+            if isinstance(layer, Attention) and exists(branch_fn):
+                layer = branch_fn(layer)
+
+            if gate_residual:
+                residual_fn = GRUGating(dim)
+            else:
+                residual_fn = Residual()
+
+            self.layers.append(nn.ModuleList([
+                norm_fn(),
+                layer,
+                residual_fn
+            ]))
+
+    def forward(
+            self,
+            x,
+            context=None,
+            mask=None,
+            context_mask=None,
+            mems=None,
+            return_hiddens=False
+    ):
+        hiddens = []
+        intermediates = []
+        prev_attn = None
+        prev_cross_attn = None
+
+        mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
+
+        for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
+            is_last = ind == (len(self.layers) - 1)
+
+            if layer_type == 'a':
+                hiddens.append(x)
+                layer_mem = mems.pop(0)
+
+            residual = x
+
+            if self.pre_norm:
+                x = norm(x)
+
+            if layer_type == 'a':
+                out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
+                                   prev_attn=prev_attn, mem=layer_mem)
+            elif layer_type == 'c':
+                out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
+            elif layer_type == 'f':
+                out = block(x)
+
+            x = residual_fn(out, residual)
+
+            if layer_type in ('a', 'c'):
+                intermediates.append(inter)
+
+            if layer_type == 'a' and self.residual_attn:
+                prev_attn = inter.pre_softmax_attn
+            elif layer_type == 'c' and self.cross_residual_attn:
+                prev_cross_attn = inter.pre_softmax_attn
+
+            if not self.pre_norm and not is_last:
+                x = norm(x)
+
+        if return_hiddens:
+            intermediates = LayerIntermediates(
+                hiddens=hiddens,
+                attn_intermediates=intermediates
+            )
+
+            return x, intermediates
+
+        return x
+
+
+class Encoder(AttentionLayers):
+    def __init__(self, **kwargs):
+        assert 'causal' not in kwargs, 'cannot set causality on encoder'
+        super().__init__(causal=False, **kwargs)
+
+
+class TransformerWrapper(nn.Module):
+    def __init__(
+            self,
+            *,
+            num_tokens,
+            max_seq_len,
+            attn_layers,
+            emb_dim=None,
+            max_mem_len=0.,
+            emb_dropout=0.,
+            num_memory_tokens=None,
+            tie_embedding=False,
+            use_pos_emb=True
+    ):
+        super().__init__()
+        assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
+
+        dim = attn_layers.dim
+        emb_dim = default(emb_dim, dim)
+
+        self.max_seq_len = max_seq_len
+        self.max_mem_len = max_mem_len
+        self.num_tokens = num_tokens
+
+        self.token_emb = nn.Embedding(num_tokens, emb_dim)
+        self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
+                use_pos_emb and not attn_layers.has_pos_emb) else always(0)
+        self.emb_dropout = nn.Dropout(emb_dropout)
+
+        self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
+        self.attn_layers = attn_layers
+        self.norm = nn.LayerNorm(dim)
+
+        self.init_()
+
+        self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
+
+        # memory tokens (like [cls]) from Memory Transformers paper
+        num_memory_tokens = default(num_memory_tokens, 0)
+        self.num_memory_tokens = num_memory_tokens
+        if num_memory_tokens > 0:
+            self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
+
+            # let funnel encoder know number of memory tokens, if specified
+            if hasattr(attn_layers, 'num_memory_tokens'):
+                attn_layers.num_memory_tokens = num_memory_tokens
+
+    def init_(self):
+        nn.init.normal_(self.token_emb.weight, std=0.02)
+
+    def forward(
+            self,
+            x,
+            return_embeddings=False,
+            mask=None,
+            return_mems=False,
+            return_attn=False,
+            mems=None,
+            **kwargs
+    ):
+        b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
+        x = self.token_emb(x)
+        x += self.pos_emb(x)
+        x = self.emb_dropout(x)
+
+        x = self.project_emb(x)
+
+        if num_mem > 0:
+            mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
+            x = torch.cat((mem, x), dim=1)
+
+            # auto-handle masking after appending memory tokens
+            if exists(mask):
+                mask = F.pad(mask, (num_mem, 0), value=True)
+
+        x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
+        x = self.norm(x)
+
+        mem, x = x[:, :num_mem], x[:, num_mem:]
+
+        out = self.to_logits(x) if not return_embeddings else x
+
+        if return_mems:
+            hiddens = intermediates.hiddens
+            new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
+            new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
+            return out, new_mems
+
+        if return_attn:
+            attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
+            return out, attn_maps
+
+        return out
diff --git a/lidm/utils/__init__.py b/lidm/utils/__init__.py
new file mode 100644
index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391
diff --git a/lidm/utils/aug_utils.py b/lidm/utils/aug_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..01c130f305afee85e02d2248122059e67ec158ad
--- /dev/null
+++ b/lidm/utils/aug_utils.py
@@ -0,0 +1,107 @@
+import numpy as np
+
+
+def get_lidar_transform(config, split):
+    transform_list = []
+    if config['rotate']:
+        transform_list.append(RandomRotateAligned())
+    if config['flip']:
+        transform_list.append(RandomFlip())
+    return Compose(transform_list) if len(transform_list) > 0 and split == 'train' else None
+
+
+def get_camera_transform(config, split):
+    # import open_clip
+    # transform = open_clip.image_transform((224, 224), split == 'train', resize_longest_max=True)
+    # TODO
+    transform = None
+    return transform
+
+
+def get_anno_transform(config, split):
+    if config['keypoint_drop'] and split == 'train':
+        drop_range = config['keypoint_drop_range'] if 'keypoint_drop_range' in config else (5, 60)
+        transform = RandomKeypointDrop(drop_range)
+    else:
+        transform = None
+    return transform
+
+
+class Compose(object):
+    def __init__(self, transforms):
+        self.transforms = transforms
+
+    def __call__(self, pcd, pcd1=None):
+        for t in self.transforms:
+            pcd, pcd1 = t(pcd, pcd1)
+        return pcd, pcd1
+
+
+class RandomFlip(object):
+    def __init__(self, p=1.):
+        self.p = p
+
+    def __call__(self, coord, coord1=None):
+        if np.random.rand() < self.p:
+            if np.random.rand() < 0.5:
+                coord[:, 0] = -coord[:, 0]
+                if coord1 is not None:
+                    coord1[:, 0] = -coord1[:, 0]
+            if np.random.rand() < 0.5:
+                coord[:, 1] = -coord[:, 1]
+                if coord1 is not None:
+                    coord1[:, 1] = -coord1[:, 1]
+        return coord, coord1
+
+
+class RandomRotateAligned(object):
+    def __init__(self, rot=np.pi / 4, p=1.):
+        self.rot = rot
+        self.p = p
+
+    def __call__(self, coord, coord1=None):
+        if np.random.rand() < self.p:
+            angle_z = np.random.uniform(-self.rot, self.rot)
+            cos_z, sin_z = np.cos(angle_z), np.sin(angle_z)
+            R = np.array([[cos_z, -sin_z, 0], [sin_z, cos_z, 0], [0, 0, 1]])
+            coord = np.dot(coord, R)
+            if coord1 is not None:
+                coord1 = np.dot(coord1, R)
+        return coord, coord1
+
+
+class RandomKeypointDrop(object):
+    def __init__(self, num_range=(5, 60), p=.5):
+        self.num_range = num_range
+        self.p = p
+
+    def __call__(self, center, category=None):
+        if np.random.rand() < self.p:
+            num = len(center)
+            if num > self.num_range[0]:
+                num_kept = np.random.randint(self.num_range[0], min(self.num_range[1], num))
+                idx_kept = np.random.choice(num, num_kept, replace=False)
+                center, category = center[idx_kept], category[idx_kept]
+        return center, category
+
+
+# class ResizeMaxSize(object):
+#     def __init__(self, max_size, interpolation=InterpolationMode.BICUBIC, fn='max', fill=0):
+#         super().__init__()
+#         if not isinstance(max_size, int):
+#             raise TypeError(f"Size should be int. Got {type(max_size)}")
+#         self.max_size = max_size
+#         self.interpolation = interpolation
+#         self.fn = min if fn == 'min' else min
+#         self.fill = fill
+#
+#     def forward(self, img):
+#         width, height = img.size
+#         scale = self.max_size / float(max(height, width))
+#         if scale != 1.0:
+#             new_size = tuple(round(dim * scale) for dim in (height, width))
+#             img = F.resize(img, new_size, self.interpolation)
+#             pad_h = self.max_size - new_size[0]
+#             pad_w = self.max_size - new_size[1]
+#             img = F.pad(img, padding=[pad_w//2, pad_h//2, pad_w - pad_w//2, pad_h - pad_h//2], fill=self.fill)
+#         return img
diff --git a/lidm/utils/lidar_utils.py b/lidm/utils/lidar_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..54845771e9fcff03d265a4426f6e214386aee2ba
--- /dev/null
+++ b/lidm/utils/lidar_utils.py
@@ -0,0 +1,206 @@
+import math
+
+import numpy as np
+
+
+def pcd2coord2d(pcd, fov, depth_range, labels=None):
+    # laser parameters
+    fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
+    fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
+    fov_range = abs(fov_down) + abs(fov_up)  # get field of view total in rad
+
+    # get depth (distance) of all points
+    depth = np.linalg.norm(pcd, 2, axis=-1)
+
+    # mask points out of range
+    mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
+    if pcd.ndim == 3:
+        mask = mask.all(axis=1)
+    depth, pcd = depth[mask], pcd[mask]
+
+    # get scan components
+    scan_x, scan_y, scan_z = pcd[..., 0], pcd[..., 1], pcd[..., 2]
+
+    # get angles of all points
+    yaw = -np.arctan2(scan_y, scan_x)
+    pitch = np.arcsin(scan_z / depth)
+
+    # get projections in image coords
+    proj_x = np.clip(0.5 * (yaw / np.pi + 1.0), 0., 1.)  # in [0.0, 1.0]
+    proj_y = np.clip(1.0 - (pitch + abs(fov_down)) / fov_range, 0., 1.)  # in [0.0, 1.0]
+    proj_coord2d = np.stack([proj_x, proj_y], axis=-1)
+
+    if labels is not None:
+        proj_labels = labels[mask]
+    else:
+        proj_labels = None
+
+    return proj_coord2d, proj_labels
+
+
+def pcd2range(pcd, size, fov, depth_range, remission=None, labels=None, **kwargs):
+    # laser parameters
+    fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
+    fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
+    fov_range = abs(fov_down) + abs(fov_up)  # get field of view total in rad
+
+    # get depth (distance) of all points
+    depth = np.linalg.norm(pcd, 2, axis=1)
+
+    # mask points out of range
+    mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
+    depth, pcd = depth[mask], pcd[mask]
+
+    # get scan components
+    scan_x, scan_y, scan_z = pcd[:, 0], pcd[:, 1], pcd[:, 2]
+
+    # get angles of all points
+    yaw = -np.arctan2(scan_y, scan_x)
+    pitch = np.arcsin(scan_z / depth)
+
+    # get projections in image coords
+    proj_x = 0.5 * (yaw / np.pi + 1.0)  # in [0.0, 1.0]
+    proj_y = 1.0 - (pitch + abs(fov_down)) / fov_range  # in [0.0, 1.0]
+
+    # scale to image size using angular resolution
+    proj_x *= size[1]  # in [0.0, W]
+    proj_y *= size[0]  # in [0.0, H]
+
+    # round and clamp for use as index
+    proj_x = np.maximum(0, np.minimum(size[1] - 1, np.floor(proj_x))).astype(np.int32)  # in [0,W-1]
+    proj_y = np.maximum(0, np.minimum(size[0] - 1, np.floor(proj_y))).astype(np.int32)  # in [0,H-1]
+
+    # order in decreasing depth
+    order = np.argsort(depth)[::-1]
+    proj_x, proj_y = proj_x[order], proj_y[order]
+
+    # project depth
+    depth = depth[order]
+    proj_range = np.full(size, -1, dtype=np.float32)
+    proj_range[proj_y, proj_x] = depth
+
+    # project point feature
+    if remission is not None:
+        remission = remission[mask][order]
+        proj_feature = np.full(size, -1, dtype=np.float32)
+        proj_feature[proj_y, proj_x] = remission
+    elif labels is not None:
+        labels = labels[mask][order]
+        proj_feature = np.full(size, 0, dtype=np.float32)
+        proj_feature[proj_y, proj_x] = labels
+    else:
+        proj_feature = None
+
+    return proj_range, proj_feature
+
+
+def range2pcd(range_img, fov, depth_range, depth_scale, log_scale=True, label=None, color=None, **kwargs):
+    # laser parameters
+    size = range_img.shape
+    fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
+    fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
+    fov_range = abs(fov_down) + abs(fov_up)  # get field of view total in rad
+
+    # inverse transform from depth
+    depth = (range_img * depth_scale).flatten()
+    if log_scale:
+        depth = np.exp2(depth) - 1
+
+    scan_x, scan_y = np.meshgrid(np.arange(size[1]), np.arange(size[0]))
+    scan_x = scan_x.astype(np.float64) / size[1]
+    scan_y = scan_y.astype(np.float64) / size[0]
+
+    yaw = (np.pi * (scan_x * 2 - 1)).flatten()
+    pitch = ((1.0 - scan_y) * fov_range - abs(fov_down)).flatten()
+
+    pcd = np.zeros((len(yaw), 3))
+    pcd[:, 0] = np.cos(yaw) * np.cos(pitch) * depth
+    pcd[:, 1] = -np.sin(yaw) * np.cos(pitch) * depth
+    pcd[:, 2] = np.sin(pitch) * depth
+
+    # mask out invalid points
+    mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
+    pcd = pcd[mask, :]
+
+    # label
+    if label is not None:
+        label = label.flatten()[mask]
+
+    # default point color
+    if color is not None:
+        color = color.reshape(-1, 3)[mask, :]
+    else:
+        color = np.ones((pcd.shape[0], 3)) * [0.7, 0.7, 1]
+
+    return pcd, color, label
+
+
+def range2xyz(range_img, fov, depth_range, depth_scale, log_scale=True, **kwargs):
+    # laser parameters
+    size = range_img.shape
+    fov_up = fov[0] / 180.0 * np.pi  # field of view up in rad
+    fov_down = fov[1] / 180.0 * np.pi  # field of view down in rad
+    fov_range = abs(fov_down) + abs(fov_up)  # get field of view total in rad
+
+    # inverse transform from depth
+    if log_scale:
+        depth = (np.exp2(range_img * depth_scale) - 1)
+    else:
+        depth = range_img
+
+    scan_x, scan_y = np.meshgrid(np.arange(size[1]), np.arange(size[0]))
+    scan_x = scan_x.astype(np.float64) / size[1]
+    scan_y = scan_y.astype(np.float64) / size[0]
+
+    yaw = np.pi * (scan_x * 2 - 1)
+    pitch = (1.0 - scan_y) * fov_range - abs(fov_down)
+
+    xyz = -np.ones((3, *size))
+    xyz[0] = np.cos(yaw) * np.cos(pitch) * depth
+    xyz[1] = -np.sin(yaw) * np.cos(pitch) * depth
+    xyz[2] = np.sin(pitch) * depth
+
+    # mask out invalid points
+    mask = np.logical_and(depth > depth_range[0], depth < depth_range[1])
+    xyz[:, ~mask] = -1
+
+    return xyz
+
+
+def pcd2bev(pcd, x_range, y_range, z_range, resolution, **kwargs):
+    # mask out invalid points
+    mask_x = np.logical_and(pcd[:, 0] > x_range[0], pcd[:, 0] < x_range[1])
+    mask_y = np.logical_and(pcd[:, 1] > y_range[0], pcd[:, 1] < y_range[1])
+    mask_z = np.logical_and(pcd[:, 2] > z_range[0], pcd[:, 2] < z_range[1])
+    mask = mask_x & mask_y & mask_z
+    pcd = pcd[mask]
+
+    # points to bev coords
+    bev_x = np.floor((pcd[:, 0] - x_range[0]) / resolution).astype(np.int32)
+    bev_y = np.floor((pcd[:, 1] - y_range[0]) / resolution).astype(np.int32)
+
+    # 2D bev grid
+    bev_shape = (math.ceil((x_range[1] - x_range[0]) // resolution), math.ceil((y_range[1] - y_range[0]) // resolution))
+    bev_grid = np.zeros(bev_shape, dtype=np.float64)
+
+    # populate the BEV grid with bev coords
+    bev_grid[bev_x, bev_y] = 1
+
+    return bev_grid
+
+
+if __name__ == '__main__':
+    # test = np.loadtxt('test_range.txt')
+    # pcd, _, _ = range2pcd(test, (32, 1024), (10, -30))
+    # np.savetxt('test_pcd.txt', pcd, fmt='%.4f')
+
+    # import matplotlib.pyplot as plt
+    # pcd = np.loadtxt('test_origin.txt')
+    # bev_grid = pcd2bev(pcd)
+    # plt.imshow(bev_grid[:, :, 0], cmap='gray')  # Display the BEV for the first height level
+    # plt.savefig('test.png', dpi=300, bbox_inches='tight', pad_inches=0, transparent=True)
+
+    from PIL import Image
+    img = Image.open('assets/kitti/range.png')
+    img.convert('L')
+    img = np.array(img) / 255.
diff --git a/lidm/utils/lr_scheduler.py b/lidm/utils/lr_scheduler.py
new file mode 100644
index 0000000000000000000000000000000000000000..be39da9ca6dacc22bf3df9c7389bbb403a4a3ade
--- /dev/null
+++ b/lidm/utils/lr_scheduler.py
@@ -0,0 +1,98 @@
+import numpy as np
+
+
+class LambdaWarmUpCosineScheduler:
+    """
+    note: use with a base_lr of 1.0
+    """
+    def __init__(self, warm_up_steps, lr_min, lr_max, lr_start, max_decay_steps, verbosity_interval=0):
+        self.lr_warm_up_steps = warm_up_steps
+        self.lr_start = lr_start
+        self.lr_min = lr_min
+        self.lr_max = lr_max
+        self.lr_max_decay_steps = max_decay_steps
+        self.last_lr = 0.
+        self.verbosity_interval = verbosity_interval
+
+    def schedule(self, n, **kwargs):
+        if self.verbosity_interval > 0:
+            if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_lr}")
+        if n < self.lr_warm_up_steps:
+            lr = (self.lr_max - self.lr_start) / self.lr_warm_up_steps * n + self.lr_start
+            self.last_lr = lr
+            return lr
+        else:
+            t = (n - self.lr_warm_up_steps) / (self.lr_max_decay_steps - self.lr_warm_up_steps)
+            t = min(t, 1.0)
+            lr = self.lr_min + 0.5 * (self.lr_max - self.lr_min) * (
+                    1 + np.cos(t * np.pi))
+            self.last_lr = lr
+            return lr
+
+    def __call__(self, n, **kwargs):
+        return self.schedule(n,**kwargs)
+
+
+class LambdaWarmUpCosineScheduler2:
+    """
+    supports repeated iterations, configurable via lists
+    note: use with a base_lr of 1.0.
+    """
+    def __init__(self, warm_up_steps, f_min, f_max, f_start, cycle_lengths, verbosity_interval=0):
+        assert len(warm_up_steps) == len(f_min) == len(f_max) == len(f_start) == len(cycle_lengths)
+        self.lr_warm_up_steps = warm_up_steps
+        self.f_start = f_start
+        self.f_min = f_min
+        self.f_max = f_max
+        self.cycle_lengths = cycle_lengths
+        self.cum_cycles = np.cumsum([0] + list(self.cycle_lengths))
+        self.last_f = 0.
+        self.verbosity_interval = verbosity_interval
+
+    def find_in_interval(self, n):
+        interval = 0
+        for cl in self.cum_cycles[1:]:
+            if n <= cl:
+                return interval
+            interval += 1
+
+    def schedule(self, n, **kwargs):
+        cycle = self.find_in_interval(n)
+        n = n - self.cum_cycles[cycle]
+        if self.verbosity_interval > 0:
+            if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
+                                                       f"current cycle {cycle}")
+        if n < self.lr_warm_up_steps[cycle]:
+            f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
+            self.last_f = f
+            return f
+        else:
+            t = (n - self.lr_warm_up_steps[cycle]) / (self.cycle_lengths[cycle] - self.lr_warm_up_steps[cycle])
+            t = min(t, 1.0)
+            f = self.f_min[cycle] + 0.5 * (self.f_max[cycle] - self.f_min[cycle]) * (
+                    1 + np.cos(t * np.pi))
+            self.last_f = f
+            return f
+
+    def __call__(self, n, **kwargs):
+        return self.schedule(n, **kwargs)
+
+
+class LambdaLinearScheduler(LambdaWarmUpCosineScheduler2):
+
+    def schedule(self, n, **kwargs):
+        cycle = self.find_in_interval(n)
+        n = n - self.cum_cycles[cycle]
+        if self.verbosity_interval > 0:
+            if n % self.verbosity_interval == 0: print(f"current step: {n}, recent lr-multiplier: {self.last_f}, "
+                                                       f"current cycle {cycle}")
+
+        if n < self.lr_warm_up_steps[cycle]:
+            f = (self.f_max[cycle] - self.f_start[cycle]) / self.lr_warm_up_steps[cycle] * n + self.f_start[cycle]
+            self.last_f = f
+            return f
+        else:
+            f = self.f_min[cycle] + (self.f_max[cycle] - self.f_min[cycle]) * (self.cycle_lengths[cycle] - n) / (self.cycle_lengths[cycle])
+            self.last_f = f
+            return f
+
diff --git a/lidm/utils/misc_utils.py b/lidm/utils/misc_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..339e5e27c7a8a5029a9f2dd0cf9f44006b2b756d
--- /dev/null
+++ b/lidm/utils/misc_utils.py
@@ -0,0 +1,243 @@
+import argparse
+import importlib
+import random
+
+import torch
+import numpy as np
+from collections import abc
+from einops import rearrange
+from functools import partial
+
+import multiprocessing as mp
+from threading import Thread
+from queue import Queue
+
+from inspect import isfunction
+from PIL import Image, ImageDraw, ImageFont
+
+
+def set_seed(seed):
+    """
+    Setting of Global Seed for Reproducibility (for inference only)
+
+    refer to: https://pytorch.org/docs/stable/notes/randomness.html
+
+    """
+    np.random.seed(seed)
+    random.seed(seed)
+    torch.manual_seed(seed)
+    torch.cuda.manual_seed(seed)
+
+    torch.backends.cudnn.deterministic = True
+    torch.backends.cudnn.benchmark = False
+
+
+def print_fn(msg, verbose):
+    if verbose:
+        print(msg)
+
+
+def dict2namespace(config):
+    namespace = argparse.Namespace()
+    for key, value in config.items():
+        if isinstance(value, dict):
+            new_value = dict2namespace(value)
+        else:
+            new_value = value
+        setattr(namespace, key, new_value)
+    return namespace
+
+
+def log_txt_as_img(wh, xc, size=10):
+    # wh a tuple of (width, height)
+    # xc a list of captions to plot
+    b = len(xc)
+    txts = list()
+    for bi in range(b):
+        txt = Image.new("RGB", wh, color="white")
+        draw = ImageDraw.Draw(txt)
+        font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
+        nc = int(40 * (wh[0] / 256))
+        lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
+
+        try:
+            draw.text((0, 0), lines, fill="black", font=font)
+        except UnicodeEncodeError:
+            print("Cant encode string for logging. Skipping.")
+
+        txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
+        txts.append(txt)
+    txts = np.stack(txts)
+    txts = torch.tensor(txts)
+    return txts
+
+
+def isdepth(x):
+    if not isinstance(x, (torch.Tensor, np.ndarray)):
+        return False
+    return ((len(x.shape) == 4) and (x.shape[1] == 1)) or (len(x.shape) == 3)
+
+
+def ismap(x):
+    if not isinstance(x, (torch.Tensor, np.ndarray)):
+        return False
+    return (len(x.shape) == 4) and (x.shape[1] > 3)
+
+
+def isimage(x):
+    if not isinstance(x, (torch.Tensor, np.ndarray)):
+        return False
+    return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
+
+
+def exists(x):
+    return x is not None
+
+
+def default(val, d):
+    if exists(val):
+        return val
+    return d() if isfunction(d) else d
+
+
+def mean_flat(tensor):
+    """
+    https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
+    Take the mean over all non-batch dimensions.
+    """
+    return tensor.mean(dim=list(range(1, len(tensor.shape))))
+
+
+def count_params(model, verbose=False):
+    total_params = sum(p.numel() for p in model.parameters())
+    if verbose:
+        print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
+    return total_params
+
+
+def instantiate_from_config(config):
+    if not "target" in config:
+        if config == '__is_first_stage__':
+            return None
+        elif config == "__is_unconditional__":
+            return None
+        raise KeyError("Expected key `target` to instantiate.")
+    return get_obj_from_str(config["target"])(**config.get("params", dict()))
+
+
+def get_obj_from_str(string, reload=False):
+    module, cls = string.rsplit(".", 1)
+    if reload:
+        module_imp = importlib.import_module(module)
+        importlib.reload(module_imp)
+    return getattr(importlib.import_module(module, package=None), cls)
+
+
+def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False):
+    # create dummy dataset instance
+
+    # run prefetching
+    if idx_to_fn:
+        res = func(data, worker_id=idx)
+    else:
+        res = func(data)
+    Q.put([idx, res])
+    Q.put("Done")
+
+
+def parallel_data_prefetch(
+        func: callable, data, n_proc, target_data_type="ndarray", cpu_intensive=True, use_worker_id=False
+):
+    # if target_data_type not in ["ndarray", "list"]:
+    #     raise ValueError(
+    #         "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray."
+    #     )
+    if isinstance(data, np.ndarray) and target_data_type == "list":
+        raise ValueError("list expected but function got ndarray.")
+    elif isinstance(data, abc.Iterable):
+        if isinstance(data, dict):
+            print(
+                f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.'
+            )
+            data = list(data.values())
+        if target_data_type == "ndarray":
+            data = np.asarray(data)
+        else:
+            data = list(data)
+    else:
+        raise TypeError(
+            f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}."
+        )
+
+    if cpu_intensive:
+        Q = mp.Queue(1000)
+        proc = mp.Process
+    else:
+        Q = Queue(1000)
+        proc = Thread
+    # spawn processes
+    if target_data_type == "ndarray":
+        arguments = [
+            [func, Q, part, i, use_worker_id]
+            for i, part in enumerate(np.array_split(data, n_proc))
+        ]
+    else:
+        step = (
+            int(len(data) / n_proc + 1)
+            if len(data) % n_proc != 0
+            else int(len(data) / n_proc)
+        )
+        arguments = [
+            [func, Q, part, i, use_worker_id]
+            for i, part in enumerate(
+                [data[i: i + step] for i in range(0, len(data), step)]
+            )
+        ]
+    processes = []
+    for i in range(n_proc):
+        p = proc(target=_do_parallel_data_prefetch, args=arguments[i])
+        processes += [p]
+
+    # start processes
+    print(f"Start prefetching...")
+    import time
+
+    start = time.time()
+    gather_res = [[] for _ in range(n_proc)]
+    try:
+        for p in processes:
+            p.start()
+
+        k = 0
+        while k < n_proc:
+            # get result
+            res = Q.get()
+            if res == "Done":
+                k += 1
+            else:
+                gather_res[res[0]] = res[1]
+
+    except Exception as e:
+        print("Exception: ", e)
+        for p in processes:
+            p.terminate()
+
+        raise e
+    finally:
+        for p in processes:
+            p.join()
+        print(f"Prefetching complete. [{time.time() - start} sec.]")
+
+    if target_data_type == 'ndarray':
+        if not isinstance(gather_res[0], np.ndarray):
+            return np.concatenate([np.asarray(r) for r in gather_res], axis=0)
+
+        # order outputs
+        return np.concatenate(gather_res, axis=0)
+    elif target_data_type == 'list':
+        out = []
+        for r in gather_res:
+            out.extend(r)
+        return out
+    else:
+        return gather_res
diff --git a/lidm/utils/model_utils.py b/lidm/utils/model_utils.py
new file mode 100644
index 0000000000000000000000000000000000000000..f040e025d44d6c310c874ed7bcef9e789ef73296
--- /dev/null
+++ b/lidm/utils/model_utils.py
@@ -0,0 +1,41 @@
+import os
+
+import torch
+import yaml
+
+from lidm.utils.misc_utils import dict2namespace
+from ..modules.rangenet.model import Model as rangenet
+
+try:
+    from ..modules.spvcnn.model import Model as spvcnn
+    from ..modules.minkowskinet.model import Model as minkowskinet
+except:
+    print('To install torchsparse 1.4.0, please refer to https://github.com/mit-han-lab/torchsparse/tree/74099d10a51c71c14318bce63d6421f698b24f24')
+
+DEFAULT_ROOT = './pretrained_weights'
+
+
+def build_model(dataset_name, model_name, device='cpu'):
+    # config
+    model_folder = os.path.join(DEFAULT_ROOT, dataset_name, model_name)
+
+    if not os.path.isdir(model_folder):
+        raise Exception('Not Available Pretrained Weights!')
+
+    config = yaml.safe_load(open(os.path.join(model_folder, 'config.yaml'), 'r'))
+    if model_name != 'rangenet':
+        config = dict2namespace(config)
+
+    # build model
+    model = eval(model_name)(config)
+
+    # load checkpoint
+    if model_name == 'rangenet':
+        model.load_pretrained_weights(model_folder)
+    else:
+        ckpt = torch.load(os.path.join(model_folder, 'model.ckpt'), map_location="cpu")
+        model.load_state_dict(ckpt['state_dict'], strict=False)
+    model.to(device)
+    model.eval()
+
+    return model
diff --git a/models/first_stage_models/kitti/f_c2_p4/config.yaml b/models/first_stage_models/kitti/f_c2_p4/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..fbedeed9f280022b163af049bb2d6f2de8da7e88
--- /dev/null
+++ b/models/first_stage_models/kitti/f_c2_p4/config.yaml
@@ -0,0 +1,57 @@
+model:
+  base_learning_rate: 4.5e-6
+  target: lidm.models.autoencoder.VQModel
+  params:
+    monitor: val/rec_loss
+    embed_dim: 8
+    n_embed: 16384
+    lib_name: lidm
+    use_mask: False  # False
+    ddconfig:
+      double_z: false
+      z_channels: 8
+      in_channels: 1
+      out_ch: 1
+      ch: 64
+      ch_mult: [1,2,2,4]  # num_down = len(ch_mult)-1
+      strides: [[1,2],[2,2],[2,2]]
+      num_res_blocks: 2
+      attn_levels: []
+      dropout: 0.0
+
+
+data:
+  target: main.DataModuleFromConfig
+  params:
+    batch_size: 4
+    num_workers: 8
+    wrap: true
+    dataset:
+      size: [64, 1024]
+      fov: [ 3,-25 ]
+      depth_range: [ 1.0,56.0 ]
+      depth_scale: 5.84  # np.log2(depth_max + 1)
+      log_scale: true
+      x_range: [ -50.0, 50.0 ]
+      y_range: [ -50.0, 50.0 ]
+      z_range: [ -3.0, 1.0 ]
+      resolution: 1
+      num_channels: 1
+      num_cats: 10
+      num_views: 2
+      num_sem_cats: 19
+      filtered_map_cats: [ ]
+    aug:
+      flip: true
+      rotate: true
+      keypoint_drop: false
+      keypoint_drop_range: [ 5,20 ]
+      randaug: false
+    train:
+      target: lidm.data.kitti.KITTIImageTrain
+      params:
+        condition_key: image
+    validation:
+      target: lidm.data.kitti.KITTIImageValidation
+      params:
+        condition_key: image
diff --git a/models/first_stage_models/kitti/f_c2_p4_wo_logscale/config.yaml b/models/first_stage_models/kitti/f_c2_p4_wo_logscale/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..8c4933ad3fe9c1ebba731074487983b1acfe2fb4
--- /dev/null
+++ b/models/first_stage_models/kitti/f_c2_p4_wo_logscale/config.yaml
@@ -0,0 +1,57 @@
+model:
+  base_learning_rate: 4.5e-6
+  target: lidm.models.autoencoder.VQModel
+  params:
+    monitor: val/rec_loss
+    embed_dim: 8
+    n_embed: 16384
+    lib_name: lidm
+    use_mask: False  # False
+    ddconfig:
+      double_z: false
+      z_channels: 8
+      in_channels: 1
+      out_ch: 1
+      ch: 64
+      ch_mult: [1,2,2,4]  # num_down = len(ch_mult)-1
+      strides: [[1,2],[2,2],[2,2]]
+      num_res_blocks: 2
+      attn_levels: []
+      dropout: 0.0
+
+
+data:
+  target: main.DataModuleFromConfig
+  params:
+    batch_size: 4
+    num_workers: 8
+    wrap: true
+    dataset:
+      size: [64, 1024]
+      fov: [ 3,-25 ]
+      depth_range: [ 1.0,56.0 ]
+      depth_scale: 56  # np.log2(depth_max + 1)
+      log_scale: false
+      x_range: [ -50.0, 50.0 ]
+      y_range: [ -50.0, 50.0 ]
+      z_range: [ -3.0, 1.0 ]
+      resolution: 1
+      num_channels: 1
+      num_cats: 10
+      num_views: 2
+      num_sem_cats: 19
+      filtered_map_cats: [ ]
+    aug:
+      flip: true
+      rotate: true
+      keypoint_drop: false
+      keypoint_drop_range: [ 5,20 ]
+      randaug: false
+    train:
+      target: lidm.data.kitti.KITTIImageTrain
+      params:
+        condition_key: image
+    validation:
+      target: lidm.data.kitti.KITTIImageValidation
+      params:
+        condition_key: image
diff --git a/models/first_stage_models/kitti/f_c2_p4_wo_logscale/model.ckpt b/models/first_stage_models/kitti/f_c2_p4_wo_logscale/model.ckpt
new file mode 100644
index 0000000000000000000000000000000000000000..821d069cbd3698a542eee442ee91977dc47975d5
--- /dev/null
+++ b/models/first_stage_models/kitti/f_c2_p4_wo_logscale/model.ckpt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:987c413105ad4959899632033091ce9c0a49a56aed1a4f293dcb263ae7022d17
+size 215383923
diff --git a/models/lidm/kitti/cam2lidar/config.yaml b/models/lidm/kitti/cam2lidar/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..ef2f705c08fa7f811f96090e9f04ec8298c79fd6
--- /dev/null
+++ b/models/lidm/kitti/cam2lidar/config.yaml
@@ -0,0 +1,110 @@
+model:
+  base_learning_rate: 2.0e-06
+  target: lidm.models.diffusion.ddpm.LatentDiffusion
+  params:
+    linear_start: 0.0015
+    linear_end: 0.0195
+    num_timesteps_cond: 1
+    log_every_t: 100
+    timesteps: 1000
+    image_size: [16, 128]
+    channels: 8
+    monitor: val/loss_simple_ema
+    first_stage_key: image
+    cond_stage_key: camera
+    conditioning_key: crossattn
+    cond_stage_trainable: true
+    verbose: false
+    unet_config:
+      target: lidm.modules.diffusion.openaimodel.UNetModel
+      params:
+        image_size: [16, 128]
+        in_channels: 8
+        out_channels: 8
+        model_channels: 256
+        attention_resolutions: [4, 2, 1]
+        num_res_blocks: 2
+        channel_mult: [1, 2, 4]
+        num_head_channels: 32
+        use_spatial_transformer: true
+        context_dim: 512
+        lib_name: lidm
+    first_stage_config:
+      target: lidm.models.autoencoder.VQModelInterface
+      params:
+        embed_dim: 8
+        n_embed: 16384
+        lib_name: lidm
+        use_mask: False  # False
+        ckpt_path: models/first_stage_models/kitti/f_c2_p4_wo_ls/model.ckpt
+        ddconfig:
+          double_z: false
+          z_channels: 8
+          in_channels: 1
+          out_ch: 1
+          ch: 64
+          ch_mult: [1,2,2,4]
+          strides: [[1,2],[2,2],[2,2]]
+          num_res_blocks: 2
+          attn_levels: []
+          dropout: 0.0
+        lossconfig:
+          target: torch.nn.Identity
+    cond_stage_config:
+      target: lidm.modules.encoders.modules.FrozenClipMultiImageEmbedder
+      params:
+        model: ViT-L/14
+        out_dim: 512
+        split_per_view: 4
+
+data:
+  target: main.DataModuleFromConfig
+  params:
+    batch_size: 8
+    num_workers: 8
+    wrap: true
+    dataset:
+      size: [64, 1024]
+      fov: [ 3,-25 ]
+      depth_range: [ 1.0,56.0 ]
+      depth_scale: 56  # np.log2(depth_max + 1)
+      log_scale: false
+      x_range: [ -50.0, 50.0 ]
+      y_range: [ -50.0, 50.0 ]
+      z_range: [ -3.0, 1.0 ]
+      resolution: 1
+      num_channels: 1
+      num_cats: 10
+      num_views: 1
+      num_sem_cats: 19
+      filtered_map_cats: [ ]
+    aug:
+      flip: false
+      rotate: false
+      keypoint_drop: false
+      keypoint_drop_range:
+      randaug: false
+      camera_drop: 0.5
+    train:
+      target: lidm.data.kitti.KITTI360Train
+      params:
+        condition_key: camera
+        split_per_view: 4
+    validation:
+      target: lidm.data.kitti.KITTI360Validation
+      params:
+        condition_key: camera
+        split_per_view: 4
+
+
+lightning:
+  callbacks:
+    image_logger:
+      target: main.ImageLogger
+      params:
+        batch_frequency: 5000
+        max_images: 8
+        increase_log_steps: False
+
+  trainer:
+    benchmark: True
\ No newline at end of file
diff --git a/models/lidm/kitti/cam2lidar/model.ckpt b/models/lidm/kitti/cam2lidar/model.ckpt
new file mode 100644
index 0000000000000000000000000000000000000000..807af1089443089a16864c3fa1275a731576c712
--- /dev/null
+++ b/models/lidm/kitti/cam2lidar/model.ckpt
@@ -0,0 +1,3 @@
+version https://git-lfs.github.com/spec/v1
+oid sha256:bc6b466d3865ff73813268ba291b32022461e9cfca7cf5bc1534ec08c9cf932a
+size 8093788309
diff --git a/models/lidm/kitti/sem2lidar/config.yaml b/models/lidm/kitti/sem2lidar/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d2cfc8e68c3bbb324570e0e85a2d7181ae78cc43
--- /dev/null
+++ b/models/lidm/kitti/sem2lidar/config.yaml
@@ -0,0 +1,105 @@
+model:
+  base_learning_rate: 1.0e-06
+  target: lidm.models.diffusion.ddpm.LatentDiffusion
+  params:
+    linear_start: 0.0015
+    linear_end: 0.0205
+    num_timesteps_cond: 1
+    log_every_t: 100
+    timesteps: 1000
+    image_size: [16, 128]
+    channels: 8
+    monitor: val/loss_simple_ema
+    first_stage_key: image
+    cond_stage_key: segmentation
+    concat_mode: true
+    cond_stage_trainable: true
+    verbose: false
+    unet_config:
+      target: lidm.modules.diffusion.openaimodel.UNetModel
+      params:
+        image_size: [16, 128]
+        in_channels: 16
+        out_channels: 8
+        model_channels: 256
+        attention_resolutions: [4, 2, 1]
+        num_res_blocks: 2
+        channel_mult: [1, 2, 4]
+        num_head_channels: 32
+        lib_name: lidm
+    first_stage_config:
+      target: lidm.models.autoencoder.VQModelInterface
+      params:
+        embed_dim: 8
+        n_embed: 16384
+        lib_name: lidm
+        use_mask: False  # False
+        ckpt_path: models/first_stage_models/kitti/f_c2_p4_wo_ls/model.ckpt
+        ddconfig:
+          double_z: false
+          z_channels: 8
+          in_channels: 1
+          out_ch: 1
+          ch: 64
+          ch_mult: [1,2,2,4]
+          strides: [[1,2],[2,2],[2,2]]
+          num_res_blocks: 2
+          attn_levels: []
+          dropout: 0.0
+        lossconfig:
+          target: torch.nn.Identity
+    cond_stage_config:
+      target: lidm.modules.encoders.modules.SpatialRescaler
+      params:
+        strides: [[1,2],[2,2],[2,2]]
+        in_channels: 20
+        out_channels: 8
+
+data:
+  target: main.DataModuleFromConfig
+  params:
+    batch_size: 16
+    num_workers: 8
+    wrap: true
+    dataset:
+      size: [64, 1024]
+      fov: [ 3,-25 ]
+      depth_range: [ 1.0,56.0 ]
+      depth_scale: 56  # np.log2(depth_max + 1)
+      log_scale: false
+      x_range: [ -50.0, 50.0 ]
+      y_range: [ -50.0, 50.0 ]
+      z_range: [ -3.0, 1.0 ]
+      resolution: 1
+      num_channels: 1
+      num_cats: 10
+      num_views: 2
+      num_sem_cats: 19
+      filtered_map_cats: [ ]
+    aug:
+      flip: true
+      rotate: false
+      keypoint_drop: false
+      keypoint_drop_range: [ 5,20 ]
+      randaug: false
+    train:
+      target: lidm.data.kitti.SemanticKITTITrain
+      params:
+        condition_key: segmentation
+    validation:
+      target: lidm.data.kitti.SemanticKITTIValidation
+      params:
+        condition_key: segmentation
+
+
+lightning:
+  callbacks:
+    image_logger:
+      target: main.ImageLogger
+      params:
+        batch_frequency: 5000
+        max_images: 8
+        increase_log_steps: False
+
+  trainer:
+    benchmark: true
\ No newline at end of file
diff --git a/models/lidm/kitti/text2lidar/config.yaml b/models/lidm/kitti/text2lidar/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..e4ceee5ef9a50533fc9b54fd3b9a384109ebeda8
--- /dev/null
+++ b/models/lidm/kitti/text2lidar/config.yaml
@@ -0,0 +1,111 @@
+model:
+  base_learning_rate: 2.0e-06
+  target: lidm.models.diffusion.ddpm.LatentDiffusion
+  params:
+    linear_start: 0.0015
+    linear_end: 0.0195
+    num_timesteps_cond: 1
+    log_every_t: 100
+    timesteps: 1000
+    image_size: [16, 128]
+    channels: 8
+    monitor: val/loss_simple_ema
+    first_stage_key: image
+    cond_stage_key: camera
+    conditioning_key: crossattn
+    cond_stage_trainable: true
+    verbose: false
+    unet_config:
+      target: lidm.modules.diffusion.openaimodel.UNetModel
+      params:
+        image_size: [16, 128]
+        in_channels: 8
+        out_channels: 8
+        model_channels: 256
+        attention_resolutions: [4, 2, 1]
+        num_res_blocks: 2
+        channel_mult: [1, 2, 4]
+        num_head_channels: 32
+        use_spatial_transformer: true
+        context_dim: 512
+        lib_name: lidm
+    first_stage_config:
+      target: lidm.models.autoencoder.VQModelInterface
+      params:
+        embed_dim: 8
+        n_embed: 16384
+        lib_name: lidm
+        use_mask: False  # False
+        ckpt_path: models/first_stage_models/kitti/f_c2_p4_wo_ls/model.ckpt
+        ddconfig:
+          double_z: false
+          z_channels: 8
+          in_channels: 1
+          out_ch: 1
+          ch: 64
+          ch_mult: [1,2,2,4]
+          strides: [[1,2],[2,2],[2,2]]
+          num_res_blocks: 2
+          attn_levels: []
+          dropout: 0.0
+        lossconfig:
+          target: torch.nn.Identity
+    cond_stage_config:
+      target: lidm.modules.encoders.modules.FrozenClipMultiImageEmbedder
+      params:
+        model: ViT-L/14
+        split_per_view: 4
+        key: camera
+        out_dim: 512
+
+data:
+  target: main.DataModuleFromConfig
+  params:
+    batch_size: 8
+    num_workers: 8
+    wrap: true
+    dataset:
+      size: [64, 1024]
+      fov: [ 3,-25 ]
+      depth_range: [ 1.0,56.0 ]
+      depth_scale: 56  # np.log2(depth_max + 1)
+      log_scale: false
+      x_range: [ -50.0, 50.0 ]
+      y_range: [ -50.0, 50.0 ]
+      z_range: [ -3.0, 1.0 ]
+      resolution: 1
+      num_channels: 1
+      num_cats: 10
+      num_views: 1
+      num_sem_cats: 19
+      filtered_map_cats: [ ]
+    aug:
+      flip: false
+      rotate: false
+      keypoint_drop: false
+      keypoint_drop_range:
+      randaug: false
+      camera_drop: 0.5
+    train:
+      target: lidm.data.kitti.KITTI360Train
+      params:
+        condition_key: camera
+        split_per_view: 4
+    validation:
+      target: lidm.data.kitti.KITTI360Validation
+      params:
+        condition_key: camera
+        split_per_view: 4
+
+
+lightning:
+  callbacks:
+    image_logger:
+      target: main.ImageLogger
+      params:
+        batch_frequency: 5000
+        max_images: 8
+        increase_log_steps: False
+
+  trainer:
+    benchmark: True
\ No newline at end of file
diff --git a/models/lidm/kitti/uncond/config.yaml b/models/lidm/kitti/uncond/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..d2ddd0e4c9916f0a6d4a4335684028e6251a93c2
--- /dev/null
+++ b/models/lidm/kitti/uncond/config.yaml
@@ -0,0 +1,96 @@
+model:
+  base_learning_rate: 1.0e-06
+  target: lidm.models.diffusion.ddpm.LatentDiffusion
+  params:
+    linear_start: 0.0015
+    linear_end: 0.0195
+    num_timesteps_cond: 1
+    log_every_t: 200
+    timesteps: 1000
+    image_size: [16, 128]
+    channels: 8
+    monitor: val/loss_simple_ema
+    first_stage_key: image
+    unet_config:
+      target: lidm.modules.diffusion.openaimodel.UNetModel
+      params:
+        image_size: [16, 128]
+        in_channels: 8
+        out_channels: 8
+        model_channels: 256
+        attention_resolutions: [4, 2, 1]
+        num_res_blocks: 2
+        channel_mult: [1, 2, 4]
+        num_head_channels: 32
+        lib_name: lidm
+    first_stage_config:
+      target: lidm.models.autoencoder.VQModelInterface
+      params:
+        embed_dim: 8
+        n_embed: 16384
+        lib_name: lidm
+        use_mask: False  # False
+        ckpt_path: models/first_stage_models/kitti/f_c2_p4/model.ckpt
+        ddconfig:
+          double_z: false
+          z_channels: 8
+          in_channels: 1
+          out_ch: 1
+          ch: 64
+          ch_mult: [1,2,2,4]
+          strides: [[1,2],[2,2],[2,2]]
+          num_res_blocks: 2
+          attn_levels: []
+          dropout: 0.0
+        lossconfig:
+          target: torch.nn.Identity
+    cond_stage_config: "__is_unconditional__"
+
+data:
+  target: main.DataModuleFromConfig
+  params:
+    batch_size: 4
+    num_workers: 8
+    wrap: true
+    dataset:
+      size: [64, 1024]
+      fov: [ 3,-25 ]
+      depth_range: [ 1.0,56.0 ]
+      depth_scale: 5.84  # np.log2(depth_max + 1)
+      log_scale: true
+      x_range: [ -50.0, 50.0 ]
+      y_range: [ -50.0, 50.0 ]
+      z_range: [ -3.0, 1.0 ]
+      resolution: 1
+      num_channels: 1
+      num_cats: 10
+      num_views: 2
+      num_sem_cats: 19
+      filtered_map_cats: [ ]
+    aug:
+      flip: true
+      rotate: false
+      keypoint_drop: false
+      keypoint_drop_range: [ 5,20 ]
+      randaug: false
+    train:
+      target: lidm.data.kitti.KITTI360Train
+      params:
+        condition_key: image
+    validation:
+      target: lidm.data.kitti.KITTI360Validation
+      params:
+        condition_key: image
+
+
+lightning:
+  callbacks:
+    image_logger:
+      target: main.ImageLogger
+      params:
+        batch_frequency: 5000
+        max_images: 8
+        increase_log_steps: False
+
+  trainer:
+    benchmark: true
diff --git a/models/lidm/kitti/uncond_wo_logscale/config.yaml b/models/lidm/kitti/uncond_wo_logscale/config.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..9eb12d7c5c36c8c4dc0ef13f8997df880c39080b
--- /dev/null
+++ b/models/lidm/kitti/uncond_wo_logscale/config.yaml
@@ -0,0 +1,96 @@
+model:
+  base_learning_rate: 1.0e-06
+  target: lidm.models.diffusion.ddpm.LatentDiffusion
+  params:
+    linear_start: 0.0015
+    linear_end: 0.0195
+    num_timesteps_cond: 1
+    log_every_t: 200
+    timesteps: 1000
+    image_size: [16, 128]
+    channels: 8
+    monitor: val/loss_simple_ema
+    first_stage_key: image
+    unet_config:
+      target: lidm.modules.diffusion.openaimodel.UNetModel
+      params:
+        image_size: [16, 128]
+        in_channels: 8
+        out_channels: 8
+        model_channels: 256
+        attention_resolutions: [4, 2, 1]
+        num_res_blocks: 2
+        channel_mult: [1, 2, 4]
+        num_head_channels: 32
+        lib_name: lidm
+    first_stage_config:
+      target: lidm.models.autoencoder.VQModelInterface
+      params:
+        embed_dim: 8
+        n_embed: 16384
+        lib_name: lidm
+        use_mask: False  # False
+        ckpt_path: models/first_stage_models/kitti/f_c2_p4_wo_ls/model.ckpt
+        ddconfig:
+          double_z: false
+          z_channels: 8
+          in_channels: 1
+          out_ch: 1
+          ch: 64
+          ch_mult: [1,2,2,4]
+          strides: [[1,2],[2,2],[2,2]]
+          num_res_blocks: 2
+          attn_levels: []
+          dropout: 0.0
+        lossconfig:
+          target: torch.nn.Identity
+    cond_stage_config: "__is_unconditional__"
+
+data:
+  target: main.DataModuleFromConfig
+  params:
+    batch_size: 4
+    num_workers: 8
+    wrap: true
+    dataset:
+      size: [64, 1024]
+      fov: [ 3,-25 ]
+      depth_range: [ 1.0,56.0 ]
+      depth_scale: 56  # np.log2(depth_max + 1)
+      log_scale: false
+      x_range: [ -50.0, 50.0 ]
+      y_range: [ -50.0, 50.0 ]
+      z_range: [ -3.0, 1.0 ]
+      resolution: 1
+      num_channels: 1
+      num_cats: 10
+      num_views: 2
+      num_sem_cats: 19
+      filtered_map_cats: [ ]
+    aug:
+      flip: true
+      rotate: false
+      keypoint_drop: false
+      keypoint_drop_range: [ 5,20 ]
+      randaug: false
+    train:
+      target: lidm.data.kitti.KITTI360Train
+      params:
+        condition_key: image
+    validation:
+      target: lidm.data.kitti.KITTI360Validation
+      params:
+        condition_key: image
+
+
+lightning:
+  callbacks:
+    image_logger:
+      target: main.ImageLogger
+      params:
+        batch_frequency: 5000
+        max_images: 8
+        increase_log_steps: False
+
+  trainer:
+    benchmark: true
diff --git a/sample_cond.py b/sample_cond.py
new file mode 100644
index 0000000000000000000000000000000000000000..4609b4cd88d7ad8a90000b0e901d457352c88f54
--- /dev/null
+++ b/sample_cond.py
@@ -0,0 +1,109 @@
+import os
+import torch
+import numpy as np
+
+from omegaconf import OmegaConf
+from PIL import Image
+
+from lidm.models.diffusion.ddim import DDIMSampler
+from lidm.utils.misc_utils import instantiate_from_config, isimage, ismap
+from lidm.utils.lidar_utils import range2pcd
+from app_config import DEVICE
+
+
+CUSTOM_STEPS = 50
+ETA = 1.0
+
+# model loading
+MODEL_PATH = './models/lidm/kitti/cam2lidar'
+CFG_PATH = os.path.join(MODEL_PATH, 'config.yaml')
+CKPT_PATH = os.path.join(MODEL_PATH, 'model.ckpt')
+
+# settings
+model_config = OmegaConf.load(CFG_PATH)
+
+
+def custom_to_pcd(x, config, rgb=None):
+    x = x.squeeze().detach().cpu().numpy()
+    x = (np.clip(x, -1., 1.) + 1.) / 2.
+    if rgb is not None:
+        rgb = rgb.squeeze().detach().cpu().numpy()
+        rgb = (np.clip(rgb, -1., 1.) + 1.) / 2.
+        rgb = rgb.transpose(1, 2, 0)
+    xyz, rgb, _ = range2pcd(x, color=rgb, **config['data']['params']['dataset'])
+
+    return xyz, rgb
+
+
+def custom_to_pil(x):
+    x = x.detach().cpu().squeeze().numpy()
+    x = (np.clip(x, -1., 1.) + 1.) / 2.
+    x = (255 * x).astype(np.uint8)
+
+    if x.ndim == 3:
+        x = x.transpose(1, 2, 0)
+    x = Image.fromarray(x)
+
+    return x
+
+
+def logs2pil(logs, keys=["sample"]):
+    imgs = dict()
+    for k in logs:
+        try:
+            if len(logs[k].shape) == 4:
+                img = custom_to_pil(logs[k][0, ...])
+            elif len(logs[k].shape) == 3:
+                img = custom_to_pil(logs[k])
+            else:
+                print(f"Unknown format for key {k}. ")
+                img = None
+        except:
+            img = None
+        imgs[k] = img
+    return imgs
+
+
+def load_model_from_config(config, sd, device):
+    model = instantiate_from_config(config)
+    model.load_state_dict(sd, strict=False)
+    model.to(device)
+    model.eval()
+    return model
+
+
+def load_model():
+    pl_sd = torch.load(CKPT_PATH, map_location="cpu")
+    model = load_model_from_config(model_config.model, pl_sd["state_dict"], DEVICE)
+    return model
+
+
+@torch.no_grad()
+def convsample_ddim(model, cond, steps, shape, eta=1.0, verbose=False):
+    ddim = DDIMSampler(model)
+    bs = shape[0]
+    shape = shape[1:]
+    samples, intermediates = ddim.sample(steps, conditioning=cond, batch_size=bs, shape=shape, eta=eta, verbose=verbose, disable_tqdm=True)
+    return samples, intermediates
+
+
+@torch.no_grad()
+def make_convolutional_sample(model, batch, batch_size, custom_steps=None, eta=1.0):
+    xc = batch['camera']
+    c = model.get_learned_conditioning(xc.to(model.device))
+
+    with model.ema_scope("Plotting"):
+        samples, z_denoise_row = model.sample_log(cond=c, batch_size=batch_size, ddim=True,
+                                                  ddim_steps=custom_steps, eta=eta)
+    x_samples = model.decode_first_stage(samples)
+
+    return x_samples
+
+
+def sample(model, cond):
+    batch = {'camera': cond}
+    img = make_convolutional_sample(model, batch, batch_size=1, custom_steps=CUSTOM_STEPS, eta=ETA)  # TODO add arguments for batch_size, custom_steps and eta
+    img = img[0, 0]
+    pcd = custom_to_pcd(img, model_config)[0].astype(np.float32)
+    return img, pcd
+