import functools import torch.nn as nn from ..basic import ActNorm, CircularConv2d class NLayerDiscriminator(nn.Module): """Defines a PatchGAN discriminator as in Pix2Pix --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=1, output_nc=1, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(NLayerDiscriminator, self).__init__() if not use_actnorm: norm_layer = nn.BatchNorm2d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = 4 padw = 1 sequence = [nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True)] nf_mult = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=2, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, padding=padw, bias=use_bias), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [ nn.Conv2d(ndf * nf_mult, output_nc, kernel_size=kw, stride=1, padding=padw)] # output 1 channel prediction map self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.main(input) class LiDARNLayerDiscriminator(nn.Module): """Modified PatchGAN discriminator from Pix2Pix --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=1, output_nc=1, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(LiDARNLayerDiscriminator, self).__init__() if not use_actnorm: norm_layer = nn.BatchNorm2d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = (4, 4) sequence = [CircularConv2d(input_nc, ndf, kernel_size=kw, stride=(1, 2), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=(1, 2), bias=use_bias, padding=(1, 2, 1, 2)), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, bias=use_bias, padding=(1, 2, 1, 2)), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [ CircularConv2d(ndf * nf_mult, output_nc, kernel_size=kw, stride=1, padding=(1, 2, 1, 2))] # output 1 channel prediction map self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.main(input) class LiDARNLayerDiscriminatorV2(nn.Module): """Modified PatchGAN discriminator from Pix2Pix (larger receptive field) --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=1, output_nc=1, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(LiDARNLayerDiscriminatorV2, self).__init__() if not use_actnorm: norm_layer = nn.BatchNorm2d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = (4, 4) sequence = [CircularConv2d(input_nc, ndf, kernel_size=kw, stride=(1, 2), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True), CircularConv2d(ndf, ndf, kernel_size=kw, stride=(1, 2), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=(2, 2), bias=use_bias, padding=(1, 2, 1, 2)), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, bias=use_bias, padding=(1, 2, 1, 2)), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [ CircularConv2d(ndf * nf_mult, output_nc, kernel_size=kw, stride=1, padding=(1, 2, 1, 2))] # output 1 channel prediction map self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" return self.main(input) class LiDARNLayerDiscriminatorV3(nn.Module): """Modified PatchGAN discriminator from Pix2Pix (larger receptive field) --> see https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/models/networks.py """ def __init__(self, input_nc=1, output_nc=1, ndf=64, n_layers=3, use_actnorm=False): """Construct a PatchGAN discriminator Parameters: input_nc (int) -- the number of channels in input images ndf (int) -- the number of filters in the last conv layer n_layers (int) -- the number of conv layers in the discriminator norm_layer -- normalization layer """ super(LiDARNLayerDiscriminatorV3, self).__init__() if not use_actnorm: norm_layer = nn.BatchNorm2d else: norm_layer = ActNorm if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters use_bias = norm_layer.func != nn.BatchNorm2d else: use_bias = norm_layer != nn.BatchNorm2d kw = (4, 4) sequence = [CircularConv2d(input_nc, ndf, kernel_size=(1, 4), stride=(1, 1), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True), CircularConv2d(ndf, ndf, kernel_size=kw, stride=(2, 2), padding=(1, 2, 1, 2)), nn.LeakyReLU(0.2, True)] nf_mult = 1 nf_mult_prev = 1 for n in range(1, n_layers): # gradually increase the number of filters nf_mult_prev = nf_mult nf_mult = min(2 ** n, 8) sequence += [ CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=(2, 2), bias=use_bias, padding=(1, 2, 1, 2)), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] nf_mult_prev = nf_mult nf_mult = min(2 ** n_layers, 8) sequence += [ CircularConv2d(ndf * nf_mult_prev, ndf * nf_mult, kernel_size=kw, stride=1, bias=use_bias, padding=(1, 2, 1, 2)), norm_layer(ndf * nf_mult), nn.LeakyReLU(0.2, True) ] sequence += [ CircularConv2d(ndf * nf_mult, output_nc, kernel_size=kw, stride=1, padding=(1, 2, 1, 2))] # output 1 channel prediction map self.main = nn.Sequential(*sequence) def forward(self, input): """Standard forward.""" import pdb; pdb.set_trace() return self.main(input)