Spaces:
Sleeping
Sleeping
from model import create_effnetb2 | |
from typing import Tuple, Dict | |
from PIL import Image | |
from time import time | |
import torch | |
import torchvision | |
import gradio as gr | |
import os | |
from pathlib import Path | |
class_names = ["pizza", "steak", "sushi"] | |
effnetb2 , effnetb2_transforms = create_effnetb2() | |
# Load weights | |
PATH = "09_pretrained_effnetb2_feature_extractor_pizza20%_10epochs.pth" | |
effnetb2.load_state_dict(torch.load(f=PATH, | |
map_location=torch.device('cpu') | |
)) | |
effnetb2.eval() | |
def predict(img) ->Tuple[Dict, float]: | |
start_time = time() | |
img_tr = img | |
img_tr = effnetb2_transforms(img_tr).unsqueeze(0) | |
#predict | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_prob = torch.softmax(effnetb2(img_tr), dim=1) | |
pred_labesls_and_pobs ={class_names[i]:pred_prob[0][i] for i in range(len(class_names)) } | |
end_time = time() | |
pred_time = round(end_time - start_time,4) | |
return pred_labesls_and_pobs ,pred_time | |
example_list = [["examples/"+example for example in os.listdir("examples") ]] | |
# Create title, description and article strings | |
title = "FoodVision Classification" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article = "Created at [Using pre-trained model efficientnet_b2](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html)." | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False) | |