from fastai.vision.all import * import gradio as gr learn = load_learner('petClassify.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, idx, probs = learn.predict(img) return {labels[i] : float(probs[i]) for i in range(len(labels))} # print(predict('licensed-image.jpeg')) title = "Pet classifier" description = "Oxford pets classifier based on fine tuned resnet 50" article = "Plaintext" enable_queue = True interpretation= 'default' examples = ['licensed-image.jpeg'] gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3), description=description, title=title, article=article, enable_queue = enable_queue, examples=examples, interpretation=interpretation ).launch(share=True)