File size: 2,492 Bytes
b741ff1
 
dba785d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b741ff1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os

import gradio as gr
import numpy as np
from PIL import Image
from sklearn.cluster import KMeans


def _image_resize(image: Image.Image, pixels: int = 90000, **kwargs):
    rt = (image.size[0] * image.size[1] / pixels) ** 0.5
    if rt > 1.0:
        small_image = image.resize((int(image.size[0] / rt), int(image.size[1] / rt)), **kwargs)
    else:
        small_image = image.copy()
    return small_image


def get_main_colors(image: Image.Image, n: int = 28, pixels: int = 90000) -> Image.Image:
    image = image.copy()
    if image.mode != 'RGB':
        image = image.convert('RGB')
    small_image = _image_resize(image, pixels)

    few_raw = np.asarray(small_image).reshape(-1, 3)
    kmeans = KMeans(n_clusters=n)
    kmeans.fit(few_raw)

    width, height = image.size
    raw = np.asarray(image).reshape(-1, 3)
    new_data = kmeans.cluster_centers_[kmeans.predict(raw)]
    new_data = new_data.round().astype(np.uint8).reshape((height, width, 3))

    return Image.fromarray(new_data, mode='RGB')


def main_func(image: Image.Image, n: int, pixels: int, fixed_width: bool, width: int):
    new_image = get_main_colors(image, n, pixels)
    if fixed_width:
        _width, _height = new_image.size
        r = width / _width
        new_width, new_height = int(round(_width * r)), int(round(_height * r))
        new_image = new_image.resize((new_width, new_height), resample=Image.NEAREST)

    return new_image


if __name__ == '__main__':
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                ch_image = gr.Image(type='pil', label='Original Image')
                with gr.Row():
                    ch_clusters = gr.Slider(value=8, minimum=2, maximum=256, step=2, label='Clusters')
                    ch_pixels = gr.Slider(value=100000, minimum=10000, maximum=1000000, step=10000,
                                          label='Pixels for Clustering')
                    ch_fixed_width = gr.Checkbox(value=True, label='Width Fixed')
                    ch_width = gr.Slider(value=200, minimum=12, maximum=2048, label='Width')

                ch_submit = gr.Button(value='Submit', variant='primary')

            with gr.Column():
                ch_output = gr.Image(type='pil', label='Output Image')

        ch_submit.click(
            main_func,
            inputs=[ch_image, ch_clusters, ch_pixels, ch_fixed_width, ch_width],
            outputs=[ch_output],
        )

    demo.queue(os.cpu_count()).launch()