Spaces:
Runtime error
Runtime error
finish
Browse files
app.py
CHANGED
@@ -48,6 +48,7 @@ with open(r'labels.txt', 'r') as fp:
|
|
48 |
|
49 |
colormap = np.asarray(ade_palette())
|
50 |
|
|
|
51 |
def label_to_color_image(label):
|
52 |
if label.ndim != 2:
|
53 |
raise ValueError("Expect 2-D input label")
|
@@ -57,26 +58,14 @@ def label_to_color_image(label):
|
|
57 |
return colormap[label]
|
58 |
|
59 |
|
60 |
-
def
|
61 |
-
|
62 |
-
|
63 |
-
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
plt.axis('off')
|
68 |
-
LABEL_NAMES = np.asarray(labels_list)
|
69 |
-
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
70 |
-
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
71 |
|
72 |
-
|
73 |
-
ax = plt.subplot(grid_spec[1])
|
74 |
-
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
75 |
-
ax.yaxis.tick_right()
|
76 |
-
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
77 |
-
plt.xticks([], [])
|
78 |
-
ax.tick_params(width=0.0, labelsize=25)
|
79 |
-
return fig
|
80 |
|
81 |
def sepia(input_img):
|
82 |
input_img = Image.fromarray(input_img)
|
@@ -88,43 +77,31 @@ def sepia(input_img):
|
|
88 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
89 |
logits = tf.image.resize(
|
90 |
logits, input_img.size[::-1]
|
91 |
-
)
|
92 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
color_seg[seg.numpy() == label, :] = color
|
99 |
-
|
100 |
-
# Show image + mask
|
101 |
-
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
102 |
-
pred_img = pred_img.astype(np.uint8)
|
103 |
|
104 |
-
|
105 |
-
return fig
|
106 |
|
107 |
|
108 |
-
def
|
109 |
-
|
110 |
-
|
111 |
-
# ์ธ๊ทธ๋ฉํ
์ด์
์ํ
|
112 |
-
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
113 |
-
outputs = model(**inputs)
|
114 |
-
logits = outputs.logits
|
115 |
-
|
116 |
-
logits = tf.transpose(logits, [0, 2, 3, 1])
|
117 |
-
logits = tf.image.resize(
|
118 |
-
logits, input_img.size[::-1]
|
119 |
-
)
|
120 |
-
seg = tf.math.argmax(logits, axis=-1)[0]
|
121 |
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
|
125 |
-
demo = gr.Interface(fn=
|
126 |
inputs=gr.Image(shape=(1024, 1024)),
|
127 |
-
outputs=
|
128 |
examples=["city-1.jpg", "city-2.jpg", "city-3.jpg", "city-4.jpg", "city-5.jpg"],
|
129 |
allow_flagging='never')
|
130 |
|
|
|
48 |
|
49 |
colormap = np.asarray(ade_palette())
|
50 |
|
51 |
+
|
52 |
def label_to_color_image(label):
|
53 |
if label.ndim != 2:
|
54 |
raise ValueError("Expect 2-D input label")
|
|
|
58 |
return colormap[label]
|
59 |
|
60 |
|
61 |
+
def draw_class_visualization(seg, class_id):
|
62 |
+
class_mask = seg.numpy() == class_id
|
63 |
+
class_color = colormap[class_id]
|
|
|
64 |
|
65 |
+
class_visualization = np.zeros(seg.shape + (3,))
|
66 |
+
class_visualization[class_mask] = class_color
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
return class_visualization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def sepia(input_img):
|
71 |
input_img = Image.fromarray(input_img)
|
|
|
77 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
78 |
logits = tf.image.resize(
|
79 |
logits, input_img.size[::-1]
|
80 |
+
)
|
81 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
82 |
|
83 |
+
class_visualizations = []
|
84 |
+
for class_id in range(len(colormap)):
|
85 |
+
class_visualization = draw_class_visualization(seg, class_id)
|
86 |
+
class_visualizations.append(class_visualization)
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
return class_visualizations
|
|
|
89 |
|
90 |
|
91 |
+
def plot_class_visualization(class_visualizations):
|
92 |
+
fig, axes = plt.subplots(1, len(class_visualizations), figsize=(20, 15))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
for i, class_visualization in enumerate(class_visualizations):
|
95 |
+
ax = axes[i]
|
96 |
+
ax.imshow(class_visualization)
|
97 |
+
ax.axis('off')
|
98 |
+
ax.set_title(labels_list[i])
|
99 |
+
return fig
|
100 |
|
101 |
|
102 |
+
demo = gr.Interface(fn=sepia,
|
103 |
inputs=gr.Image(shape=(1024, 1024)),
|
104 |
+
outputs=gr.outputs.Image(type='plot', label="Class Visualizations"),
|
105 |
examples=["city-1.jpg", "city-2.jpg", "city-3.jpg", "city-4.jpg", "city-5.jpg"],
|
106 |
allow_flagging='never')
|
107 |
|