Spaces:
Runtime error
Runtime error
finish
Browse files
app.py
CHANGED
@@ -5,7 +5,7 @@ import matplotlib.pyplot as plt
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
import tensorflow as tf
|
8 |
-
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation,
|
9 |
|
10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
"nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
|
@@ -14,7 +14,7 @@ seg_model = TFSegformerForSemanticSegmentation.from_pretrained(
|
|
14 |
"nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
|
15 |
)
|
16 |
|
17 |
-
caption_model =
|
18 |
|
19 |
def ade_palette():
|
20 |
"""ADE20K palette that maps each class to RGB values."""
|
@@ -108,20 +108,29 @@ def sepia(input_img):
|
|
108 |
|
109 |
def segment_and_caption(input_img):
|
110 |
input_img = Image.fromarray(input_img)
|
|
|
|
|
111 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
112 |
outputs = seg_model(**inputs)
|
113 |
logits = outputs.logits
|
|
|
114 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
115 |
logits = tf.image.resize(
|
116 |
logits, input_img.size[::-1]
|
117 |
)
|
118 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
|
|
|
|
119 |
seg_text = ""
|
120 |
for label, label_name in enumerate(labels_list):
|
121 |
count = np.sum(seg.numpy() == label)
|
122 |
seg_text += f"{label_name}: {count} pixels\n"
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
return input_img, seg_text, caption_text
|
126 |
|
127 |
|
|
|
5 |
import numpy as np
|
6 |
from PIL import Image
|
7 |
import tensorflow as tf
|
8 |
+
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation, AutoFeatureExtractor, AutoModelForImageCaptioning
|
9 |
|
10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
"nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
|
|
|
14 |
"nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
|
15 |
)
|
16 |
|
17 |
+
caption_model = AutoModelForImageCaptioning.from_pretrained("facebook/deit-base-cc-turbo")
|
18 |
|
19 |
def ade_palette():
|
20 |
"""ADE20K palette that maps each class to RGB values."""
|
|
|
108 |
|
109 |
def segment_and_caption(input_img):
|
110 |
input_img = Image.fromarray(input_img)
|
111 |
+
|
112 |
+
# ์ธ๊ทธ๋ฉํ
์ด์
์ํ
|
113 |
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
114 |
outputs = seg_model(**inputs)
|
115 |
logits = outputs.logits
|
116 |
+
|
117 |
logits = tf.transpose(logits, [0, 2, 3, 1])
|
118 |
logits = tf.image.resize(
|
119 |
logits, input_img.size[::-1]
|
120 |
)
|
121 |
seg = tf.math.argmax(logits, axis=-1)[0]
|
122 |
+
|
123 |
+
# ์ธ๊ทธ๋ฉํ
์ด์
๊ฒฐ๊ณผ๋ฅผ ํ
์คํธ๋ก ๋ณํ
|
124 |
seg_text = ""
|
125 |
for label, label_name in enumerate(labels_list):
|
126 |
count = np.sum(seg.numpy() == label)
|
127 |
seg_text += f"{label_name}: {count} pixels\n"
|
128 |
+
|
129 |
+
# ์ด๋ฏธ์ง ์บก์
์์ฑ
|
130 |
+
caption_input = caption_model.generate(input_img, max_length=20, num_return_sequences=1)
|
131 |
+
caption_text = caption_input[0]['text']
|
132 |
+
|
133 |
+
# ์ธ๊ทธ๋ฉํ
์ด์
๊ฒฐ๊ณผ์ ์บก์
์ ๋ฐํ
|
134 |
return input_img, seg_text, caption_text
|
135 |
|
136 |
|