Spaces:
Running
Running
Commit
·
1b147a3
1
Parent(s):
980de13
Update app.py
Browse files
app.py
CHANGED
@@ -66,8 +66,6 @@ class GeoTr_Seg(nn.Module):
|
|
66 |
return bm
|
67 |
|
68 |
|
69 |
-
|
70 |
-
|
71 |
# Initialize models
|
72 |
GeoTr_Seg_model = GeoTr_Seg()
|
73 |
#IllTr_model = IllTr()
|
@@ -83,27 +81,27 @@ GeoTr_Seg_model = torch.compile(GeoTr_Seg_model)
|
|
83 |
|
84 |
def process_image(input_image):
|
85 |
GeoTr_Seg_model.eval()
|
86 |
-
#IllTr_model.eval()
|
87 |
|
88 |
im_ori = np.array(input_image)[:, :, :3] / 255.
|
89 |
h, w, _ = im_ori.shape
|
90 |
-
|
|
|
91 |
im = im.transpose(2, 0, 1)
|
92 |
im = torch.from_numpy(im).float().unsqueeze(0)
|
93 |
|
94 |
with torch.no_grad():
|
95 |
bm = GeoTr_Seg_model(im)
|
96 |
bm = bm.cpu()
|
97 |
-
bm0 = cv2.resize(bm[0, 0].numpy(), (
|
98 |
-
bm1 = cv2.resize(bm[0, 1].numpy(), (
|
99 |
bm0 = cv2.blur(bm0, (3, 3))
|
100 |
bm1 = cv2.blur(bm1, (3, 3))
|
101 |
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0)
|
102 |
|
103 |
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
|
104 |
img_geo = ((out[0] * 255).permute(1, 2, 0).numpy()).astype(np.uint8)
|
105 |
-
|
106 |
-
ill_rec=False
|
107 |
|
108 |
if ill_rec:
|
109 |
img_ill = rec_ill(IllTr_model, img_geo)
|
@@ -111,6 +109,7 @@ def process_image(input_image):
|
|
111 |
else:
|
112 |
return Image.fromarray(img_geo)
|
113 |
|
|
|
114 |
# Define Gradio interface
|
115 |
input_image = gr.inputs.Image()
|
116 |
output_image = gr.outputs.Image(type='pil')
|
|
|
66 |
return bm
|
67 |
|
68 |
|
|
|
|
|
69 |
# Initialize models
|
70 |
GeoTr_Seg_model = GeoTr_Seg()
|
71 |
#IllTr_model = IllTr()
|
|
|
81 |
|
82 |
def process_image(input_image):
|
83 |
GeoTr_Seg_model.eval()
|
|
|
84 |
|
85 |
im_ori = np.array(input_image)[:, :, :3] / 255.
|
86 |
h, w, _ = im_ori.shape
|
87 |
+
new_height = int(h * (288 / w))
|
88 |
+
im = cv2.resize(im_ori, (288, new_height))
|
89 |
im = im.transpose(2, 0, 1)
|
90 |
im = torch.from_numpy(im).float().unsqueeze(0)
|
91 |
|
92 |
with torch.no_grad():
|
93 |
bm = GeoTr_Seg_model(im)
|
94 |
bm = bm.cpu()
|
95 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (288, new_height))
|
96 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (288, new_height))
|
97 |
bm0 = cv2.blur(bm0, (3, 3))
|
98 |
bm1 = cv2.blur(bm1, (3, 3))
|
99 |
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0)
|
100 |
|
101 |
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
|
102 |
img_geo = ((out[0] * 255).permute(1, 2, 0).numpy()).astype(np.uint8)
|
103 |
+
|
104 |
+
ill_rec = False
|
105 |
|
106 |
if ill_rec:
|
107 |
img_ill = rec_ill(IllTr_model, img_geo)
|
|
|
109 |
else:
|
110 |
return Image.fromarray(img_geo)
|
111 |
|
112 |
+
|
113 |
# Define Gradio interface
|
114 |
input_image = gr.inputs.Image()
|
115 |
output_image = gr.outputs.Image(type='pil')
|