Spaces:
Running
Running
Commit
·
2ddeb02
1
Parent(s):
63e518b
Delete demo.py
Browse files
demo.py
DELETED
@@ -1,178 +0,0 @@
|
|
1 |
-
#origin
|
2 |
-
|
3 |
-
from seg import U2NETP
|
4 |
-
from GeoTr import GeoTr
|
5 |
-
from IllTr import IllTr
|
6 |
-
from inference_ill import rec_ill
|
7 |
-
|
8 |
-
import torch
|
9 |
-
import torch.nn as nn
|
10 |
-
import torch.nn.functional as F
|
11 |
-
import skimage.io as io
|
12 |
-
import numpy as np
|
13 |
-
import cv2
|
14 |
-
import glob
|
15 |
-
import os
|
16 |
-
from PIL import Image
|
17 |
-
import argparse
|
18 |
-
import warnings
|
19 |
-
warnings.filterwarnings('ignore')
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
import gradio as gr
|
26 |
-
|
27 |
-
|
28 |
-
class GeoTr_Seg(nn.Module):
|
29 |
-
def __init__(self):
|
30 |
-
super(GeoTr_Seg, self).__init__()
|
31 |
-
self.msk = U2NETP(3, 1)
|
32 |
-
self.GeoTr = GeoTr(num_attn_layers=6)
|
33 |
-
|
34 |
-
def forward(self, x):
|
35 |
-
msk, _1,_2,_3,_4,_5,_6 = self.msk(x)
|
36 |
-
msk = (msk > 0.5).float()
|
37 |
-
x = msk * x
|
38 |
-
|
39 |
-
bm = self.GeoTr(x)
|
40 |
-
bm = (2 * (bm / 286.8) - 1) * 0.99
|
41 |
-
|
42 |
-
return bm
|
43 |
-
|
44 |
-
|
45 |
-
def reload_model(model, path=""):
|
46 |
-
if not bool(path):
|
47 |
-
return model
|
48 |
-
else:
|
49 |
-
model_dict = model.state_dict()
|
50 |
-
pretrained_dict = torch.load(path, map_location='cpu')
|
51 |
-
#print(len(pretrained_dict.keys()))
|
52 |
-
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
|
53 |
-
#print(len(pretrained_dict.keys()))
|
54 |
-
model_dict.update(pretrained_dict)
|
55 |
-
model.load_state_dict(model_dict)
|
56 |
-
|
57 |
-
return model
|
58 |
-
|
59 |
-
|
60 |
-
def reload_segmodel(model, path=""):
|
61 |
-
if not bool(path):
|
62 |
-
return model
|
63 |
-
else:
|
64 |
-
model_dict = model.state_dict()
|
65 |
-
pretrained_dict = torch.load(path, map_location='cpu')
|
66 |
-
#print(len(pretrained_dict.keys()))
|
67 |
-
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
|
68 |
-
#print(len(pretrained_dict.keys()))
|
69 |
-
model_dict.update(pretrained_dict)
|
70 |
-
model.load_state_dict(model_dict)
|
71 |
-
|
72 |
-
return model
|
73 |
-
|
74 |
-
|
75 |
-
def rec(opt):
|
76 |
-
# print(torch.__version__) # 1.5.1
|
77 |
-
img_list = os.listdir(opt.distorrted_path) # distorted images list
|
78 |
-
|
79 |
-
if not os.path.exists(opt.gsave_path): # create save path
|
80 |
-
os.mkdir(opt.gsave_path)
|
81 |
-
if not os.path.exists(opt.isave_path): # create save path
|
82 |
-
os.mkdir(opt.isave_path)
|
83 |
-
|
84 |
-
GeoTr_Seg_model = GeoTr_Seg()#.cuda()
|
85 |
-
# reload segmentation model
|
86 |
-
reload_segmodel(GeoTr_Seg_model.msk, opt.Seg_path)
|
87 |
-
# reload geometric unwarping model
|
88 |
-
reload_model(GeoTr_Seg_model.GeoTr, opt.GeoTr_path)
|
89 |
-
|
90 |
-
IllTr_model = IllTr()#.cuda()
|
91 |
-
# reload illumination rectification model
|
92 |
-
reload_model(IllTr_model, opt.IllTr_path)
|
93 |
-
|
94 |
-
# To eval mode
|
95 |
-
GeoTr_Seg_model.eval()
|
96 |
-
IllTr_model.eval()
|
97 |
-
|
98 |
-
for img_path in img_list:
|
99 |
-
name = img_path.split('.')[-2] # image name
|
100 |
-
|
101 |
-
img_path = opt.distorrted_path + img_path # read image and to tensor
|
102 |
-
im_ori = np.array(Image.open(img_path))[:, :, :3] / 255.
|
103 |
-
h, w, _ = im_ori.shape
|
104 |
-
im = cv2.resize(im_ori, (288, 288))
|
105 |
-
im = im.transpose(2, 0, 1)
|
106 |
-
im = torch.from_numpy(im).float().unsqueeze(0)
|
107 |
-
|
108 |
-
with torch.no_grad():
|
109 |
-
# geometric unwarping
|
110 |
-
bm = GeoTr_Seg_model(im)
|
111 |
-
bm = bm.cpu()
|
112 |
-
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
|
113 |
-
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
|
114 |
-
bm0 = cv2.blur(bm0, (3, 3))
|
115 |
-
bm1 = cv2.blur(bm1, (3, 3))
|
116 |
-
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
|
117 |
-
|
118 |
-
out = F.grid_sample(torch.from_numpy(im_ori).permute(2,0,1).unsqueeze(0).float(), lbl, align_corners=True)
|
119 |
-
img_geo = ((out[0]*255).permute(1, 2, 0).numpy())[:,:,::-1].astype(np.uint8)
|
120 |
-
cv2.imwrite(opt.gsave_path + name + '_geo' + '.png', img_geo) # save
|
121 |
-
|
122 |
-
# illumination rectification
|
123 |
-
if opt.ill_rec:
|
124 |
-
ill_savep = opt.isave_path + name + '_ill' + '.png'
|
125 |
-
rec_ill(IllTr_model, img_geo, saveRecPath=ill_savep)
|
126 |
-
|
127 |
-
print('Done: ', img_path)
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
def process_image(input_image):
|
135 |
-
GeoTr_Seg_model = GeoTr_Seg()#.cuda()
|
136 |
-
reload_segmodel(GeoTr_Seg_model.msk, './model_pretrained/seg.pth')
|
137 |
-
reload_model(GeoTr_Seg_model.GeoTr, './model_pretrained/geotr.pth')
|
138 |
-
|
139 |
-
IllTr_model = IllTr()#.cuda()
|
140 |
-
reload_model(IllTr_model, './model_pretrained/illtr.pth')
|
141 |
-
|
142 |
-
GeoTr_Seg_model.eval()
|
143 |
-
IllTr_model.eval()
|
144 |
-
|
145 |
-
im_ori = np.array(input_image)[:, :, :3] / 255.
|
146 |
-
h, w, _ = im_ori.shape
|
147 |
-
im = cv2.resize(im_ori, (288, 288))
|
148 |
-
im = im.transpose(2, 0, 1)
|
149 |
-
im = torch.from_numpy(im).float().unsqueeze(0)
|
150 |
-
|
151 |
-
with torch.no_grad():
|
152 |
-
bm = GeoTr_Seg_model(im)
|
153 |
-
bm = bm.cpu()
|
154 |
-
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h))
|
155 |
-
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h))
|
156 |
-
bm0 = cv2.blur(bm0, (3, 3))
|
157 |
-
bm1 = cv2.blur(bm1, (3, 3))
|
158 |
-
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0)
|
159 |
-
|
160 |
-
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
|
161 |
-
img_geo = ((out[0] * 255).permute(1, 2, 0).numpy()).astype(np.uint8)
|
162 |
-
|
163 |
-
ill_rec=False
|
164 |
-
|
165 |
-
if ill_rec:
|
166 |
-
img_ill = rec_ill(IllTr_model, img_geo)
|
167 |
-
return Image.fromarray(img_ill)
|
168 |
-
else:
|
169 |
-
return Image.fromarray(img_geo)
|
170 |
-
|
171 |
-
# Define Gradio interface
|
172 |
-
input_image = gr.inputs.Image()
|
173 |
-
output_image = gr.outputs.Image(type='pil')
|
174 |
-
|
175 |
-
|
176 |
-
iface = gr.Interface(fn=process_image, inputs=input_image, outputs=output_image, title="Image Correction")
|
177 |
-
iface.launch(server_port=1234, server_name="0.0.0.0")
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|