Spaces:
Running
Running
Commit
·
ea9f27f
1
Parent(s):
dee3268
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
iface.launch()
|
|
|
|
1 |
+
#origin
|
2 |
+
|
3 |
+
from seg import U2NETP
|
4 |
+
from GeoTr import GeoTr
|
5 |
+
from IllTr import IllTr
|
6 |
+
from inference_ill import rec_ill
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import skimage.io as io
|
12 |
+
import numpy as np
|
13 |
+
import cv2
|
14 |
+
#import glob
|
15 |
+
import os
|
16 |
+
from PIL import Image
|
17 |
+
#import argparse
|
18 |
+
import warnings
|
19 |
+
warnings.filterwarnings('ignore')
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
import gradio as gr
|
26 |
|
|
|
|
|
27 |
|
28 |
+
class GeoTr_Seg(nn.Module):
|
29 |
+
def __init__(self):
|
30 |
+
super(GeoTr_Seg, self).__init__()
|
31 |
+
self.msk = U2NETP(3, 1)
|
32 |
+
self.GeoTr = GeoTr(num_attn_layers=6)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
msk, _1,_2,_3,_4,_5,_6 = self.msk(x)
|
36 |
+
msk = (msk > 0.5).float()
|
37 |
+
x = msk * x
|
38 |
+
|
39 |
+
bm = self.GeoTr(x)
|
40 |
+
bm = (2 * (bm / 286.8) - 1) * 0.99
|
41 |
+
|
42 |
+
return bm
|
43 |
+
|
44 |
+
|
45 |
+
def reload_model(model, path=""):
|
46 |
+
if not bool(path):
|
47 |
+
return model
|
48 |
+
else:
|
49 |
+
model_dict = model.state_dict()
|
50 |
+
pretrained_dict = torch.load(path, map_location='cuda:0')
|
51 |
+
print(len(pretrained_dict.keys()))
|
52 |
+
pretrained_dict = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in model_dict}
|
53 |
+
print(len(pretrained_dict.keys()))
|
54 |
+
model_dict.update(pretrained_dict)
|
55 |
+
model.load_state_dict(model_dict)
|
56 |
+
|
57 |
+
return model
|
58 |
+
|
59 |
+
|
60 |
+
def reload_segmodel(model, path=""):
|
61 |
+
if not bool(path):
|
62 |
+
return model
|
63 |
+
else:
|
64 |
+
model_dict = model.state_dict()
|
65 |
+
pretrained_dict = torch.load(path, map_location='cuda:0')
|
66 |
+
print(len(pretrained_dict.keys()))
|
67 |
+
pretrained_dict = {k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict}
|
68 |
+
print(len(pretrained_dict.keys()))
|
69 |
+
model_dict.update(pretrained_dict)
|
70 |
+
model.load_state_dict(model_dict)
|
71 |
+
|
72 |
+
return model
|
73 |
+
|
74 |
+
|
75 |
+
def rec(opt):
|
76 |
+
# print(torch.__version__) # 1.5.1
|
77 |
+
img_list = os.listdir(opt.distorrted_path) # distorted images list
|
78 |
+
|
79 |
+
if not os.path.exists(opt.gsave_path): # create save path
|
80 |
+
os.mkdir(opt.gsave_path)
|
81 |
+
if not os.path.exists(opt.isave_path): # create save path
|
82 |
+
os.mkdir(opt.isave_path)
|
83 |
+
|
84 |
+
GeoTr_Seg_model = GeoTr_Seg().cuda()
|
85 |
+
# reload segmentation model
|
86 |
+
reload_segmodel(GeoTr_Seg_model.msk, opt.Seg_path)
|
87 |
+
# reload geometric unwarping model
|
88 |
+
reload_model(GeoTr_Seg_model.GeoTr, opt.GeoTr_path)
|
89 |
+
|
90 |
+
IllTr_model = IllTr().cuda()
|
91 |
+
# reload illumination rectification model
|
92 |
+
reload_model(IllTr_model, opt.IllTr_path)
|
93 |
+
|
94 |
+
# To eval mode
|
95 |
+
GeoTr_Seg_model.eval()
|
96 |
+
IllTr_model.eval()
|
97 |
+
|
98 |
+
for img_path in img_list:
|
99 |
+
name = img_path.split('.')[-2] # image name
|
100 |
+
|
101 |
+
img_path = opt.distorrted_path + img_path # read image and to tensor
|
102 |
+
im_ori = np.array(Image.open(img_path))[:, :, :3] / 255.
|
103 |
+
h, w, _ = im_ori.shape
|
104 |
+
im = cv2.resize(im_ori, (288, 288))
|
105 |
+
im = im.transpose(2, 0, 1)
|
106 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
107 |
+
|
108 |
+
with torch.no_grad():
|
109 |
+
# geometric unwarping
|
110 |
+
bm = GeoTr_Seg_model(im.cuda())
|
111 |
+
bm = bm.cpu()
|
112 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h)) # x flow
|
113 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h)) # y flow
|
114 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
115 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
116 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0) # h * w * 2
|
117 |
+
|
118 |
+
out = F.grid_sample(torch.from_numpy(im_ori).permute(2,0,1).unsqueeze(0).float(), lbl, align_corners=True)
|
119 |
+
img_geo = ((out[0]*255).permute(1, 2, 0).numpy())[:,:,::-1].astype(np.uint8)
|
120 |
+
cv2.imwrite(opt.gsave_path + name + '_geo' + '.png', img_geo) # save
|
121 |
+
|
122 |
+
# illumination rectification
|
123 |
+
if opt.ill_rec:
|
124 |
+
ill_savep = opt.isave_path + name + '_ill' + '.png'
|
125 |
+
rec_ill(IllTr_model, img_geo, saveRecPath=ill_savep)
|
126 |
+
|
127 |
+
print('Done: ', img_path)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
def process_image(input_image):
|
135 |
+
GeoTr_Seg_model = GeoTr_Seg().cuda()
|
136 |
+
reload_segmodel(GeoTr_Seg_model.msk, './model_pretrained/seg.pth')
|
137 |
+
reload_model(GeoTr_Seg_model.GeoTr, './model_pretrained/geotr.pth')
|
138 |
+
|
139 |
+
IllTr_model = IllTr().cuda()
|
140 |
+
reload_model(IllTr_model, './model_pretrained/illtr.pth')
|
141 |
+
|
142 |
+
GeoTr_Seg_model.eval()
|
143 |
+
IllTr_model.eval()
|
144 |
+
|
145 |
+
im_ori = np.array(input_image)[:, :, :3] / 255.
|
146 |
+
h, w, _ = im_ori.shape
|
147 |
+
im = cv2.resize(im_ori, (288, 288))
|
148 |
+
im = im.transpose(2, 0, 1)
|
149 |
+
im = torch.from_numpy(im).float().unsqueeze(0)
|
150 |
+
|
151 |
+
with torch.no_grad():
|
152 |
+
bm = GeoTr_Seg_model(im.cuda())
|
153 |
+
bm = bm.cpu()
|
154 |
+
bm0 = cv2.resize(bm[0, 0].numpy(), (w, h))
|
155 |
+
bm1 = cv2.resize(bm[0, 1].numpy(), (w, h))
|
156 |
+
bm0 = cv2.blur(bm0, (3, 3))
|
157 |
+
bm1 = cv2.blur(bm1, (3, 3))
|
158 |
+
lbl = torch.from_numpy(np.stack([bm0, bm1], axis=2)).unsqueeze(0)
|
159 |
+
|
160 |
+
out = F.grid_sample(torch.from_numpy(im_ori).permute(2, 0, 1).unsqueeze(0).float(), lbl, align_corners=True)
|
161 |
+
img_geo = ((out[0] * 255).permute(1, 2, 0).numpy()).astype(np.uint8)
|
162 |
+
|
163 |
+
ill_rec=False
|
164 |
+
|
165 |
+
if ill_rec:
|
166 |
+
img_ill = rec_ill(IllTr_model, img_geo)
|
167 |
+
return Image.fromarray(img_ill)
|
168 |
+
else:
|
169 |
+
return Image.fromarray(img_geo)
|
170 |
+
|
171 |
+
# Define Gradio interface
|
172 |
+
input_image = gr.inputs.Image()
|
173 |
+
output_image = gr.outputs.Image(type='pil')
|
174 |
+
|
175 |
+
|
176 |
+
iface = gr.Interface(fn=process_image, inputs=input_image, outputs=output_image, title="Image Correction")
|
177 |
iface.launch()
|
178 |
+
|