File size: 5,993 Bytes
9cc3eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from typing import Tuple, Literal

import torch
from mmengine import MMLogger

from mmdet.registry import MODELS
from mmengine.model import BaseModule
from mmengine.structures import InstanceData

from ext.sam import PromptEncoder
from ext.meta.sam_meta import meta_dict, checkpoint_dict
from utils.load_checkpoint import load_checkpoint_with_prefix


@MODELS.register_module()
class SAMPromptEncoder(BaseModule):

    def __init__(
            self,
            model_name: Literal['vit_h', 'vit_l', 'vit_b'] = 'vit_h',
            fix: bool = True,
            init_cfg=None,
    ):
        assert init_cfg is not None and init_cfg['type'] == 'sam_pretrain', f"{init_cfg['type']} is not supported."
        pretrained = init_cfg['checkpoint']
        super().__init__(init_cfg=None)
        self.init_cfg = init_cfg
        self.logger = MMLogger.get_current_instance()

        backbone_meta = meta_dict[model_name]
        checkpoint_path = checkpoint_dict[pretrained]

        prompt_encoder = PromptEncoder(
            embed_dim=256,
            image_embedding_size=(backbone_meta['image_embedding_size'], backbone_meta['image_embedding_size']),
            input_image_size=(backbone_meta['image_size'], backbone_meta['image_size']),
            mask_in_chans=16,
        )
        state_dict = load_checkpoint_with_prefix(checkpoint_path, prefix='prompt_encoder')
        prompt_encoder.load_state_dict(state_dict, strict=True)

        # meta
        self.embed_dim = prompt_encoder.embed_dim
        self.input_image_size = prompt_encoder.input_image_size
        self.image_embedding_size = prompt_encoder.image_embedding_size
        self.num_point_embeddings = 4
        self.mask_input_size = prompt_encoder.mask_input_size

        # positional encoding
        self.pe_layer = prompt_encoder.pe_layer

        # mask encoding
        self.mask_downscaling = prompt_encoder.mask_downscaling
        self.no_mask_embed = prompt_encoder.no_mask_embed

        # point encoding
        self.point_embeddings = prompt_encoder.point_embeddings
        self.not_a_point_embed = prompt_encoder.not_a_point_embed

        self.fix = fix
        if self.fix:
            self.train(mode=False)
            for name, param in self.named_parameters():
                param.requires_grad = False

    @property
    def device(self):
        return self.no_mask_embed.weight.device

    def init_weights(self):
        self.logger.info(f"Init Config for {self.__class__.__name__}")
        self.logger.info(self.init_cfg)

    def train(self: torch.nn.Module, mode: bool = True) -> torch.nn.Module:
        if not isinstance(mode, bool):
            raise ValueError("training mode is expected to be boolean")
        if self.fix:
            super().train(mode=False)
        else:
            super().train(mode=mode)
        return self

    def _embed_boxes(self, bboxes: torch.Tensor, image_size: Tuple[int, int]) -> torch.Tensor:
        """Embeds box prompts."""
        bboxes = bboxes + 0.5  # Shift to center of pixel
        coords = bboxes.reshape(-1, 2, 2)
        corner_embedding = self.pe_layer.forward_with_coords(coords, image_size)
        corner_embedding[:, 0, :] += self.point_embeddings[2].weight
        corner_embedding[:, 1, :] += self.point_embeddings[3].weight
        return corner_embedding

    def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
        """Embeds mask inputs."""
        mask_embedding = self.mask_downscaling(masks)
        return mask_embedding

    def get_dense_pe(self) -> torch.Tensor:
        return self.pe_layer(self.image_embedding_size).unsqueeze(0)

    def _embed_points(
        self,
        points: torch.Tensor,
        labels: torch.Tensor,
        pad: bool,
    ) -> torch.Tensor:
        """Embeds point prompts."""
        points = points + 0.5  # Shift to center of pixel
        if pad:
            padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
            padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
            points = torch.cat([points, padding_point], dim=1)
            labels = torch.cat([labels, padding_label], dim=1)
        point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
        point_embedding[labels == -1] = 0.0
        point_embedding[labels == -1] += self.not_a_point_embed.weight
        point_embedding[labels == 0] += self.point_embeddings[0].weight
        point_embedding[labels == 1] += self.point_embeddings[1].weight
        return point_embedding

    def forward(
            self,
            instances: InstanceData,
            image_size: Tuple[int, int],
            with_points: bool = False,
            with_bboxes: bool = False,
            with_masks: bool = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        assert with_points or with_bboxes or with_masks
        bs = len(instances)
        sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self.device)
        if with_points:
            assert 'point_coords' in instances
            coords = instances.point_coords
            labels = torch.ones_like(coords)[:, :, 0]
            point_embeddings = self._embed_points(coords, labels, pad=not with_bboxes)
            sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)

        if with_bboxes:
            assert 'bboxes' in instances
            box_embeddings = self._embed_boxes(
                instances.bboxes, image_size=image_size
            )
            sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)

        if with_masks:
            assert 'masks' in instances
            dense_embeddings = self._embed_masks(instances.masks.masks)
        else:
            dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
                bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
            )
        return sparse_embeddings, dense_embeddings