# try: # import streamlit as st # from transformers import AutoTokenizer,pipeline # model_name ="NousResearch/Llama-2-7b-chat-hf" # print('tokenizer_loading') # tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) # tokenizer.pad_token = tokenizer.eos_token # tokenizer.padding_side = "right" # print('tokenizer_loaded') # model = "Hardik1234/llama-finetune-reactjs" # print('loading_model') # pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=2048) # print('model_loaded') # prompt = st.text_area('Enter prompt: ') # if prompt: # print('taking prompt') # result = pipe(f" [INST] {prompt} [/INST] ") # print('generating output') # st.json(result[0]['generated_text']) # except Exception as e: # print(e) import streamlit as st from transformers import AutoTokenizer,pipeline pipe = pipeline('sentiment-analysis') text = st.text_area('Enter text:') if text: st.json(pipe(text))