Hardik5456's picture
Update app.py
41f1852 verified
raw
history blame
3.5 kB
import os
import threading
import discord
import requests
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from dotenv import load_dotenv
# Load environment variables from Hugging Face Secrets (and .env if local)
load_dotenv()
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN")
HF_TOKEN = os.getenv("HF_TOKEN") # Optional: only needed if model repo is private
if not DISCORD_TOKEN:
raise ValueError("Discord bot token is missing. Set DISCORD_TOKEN in the environment variables.")
# Set the model repository name. For DeepScaleR-1.5B-Preview, use:
MODEL_NAME = "agentica-org/DeepScaleR-1.5B-Preview"
# Load the tokenizer and model.
# Using token=HF_TOKEN instead of use_auth_token (per the new deprecation)
if HF_TOKEN:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, token=HF_TOKEN, torch_dtype=torch.float16, device_map="auto"
)
else:
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME, torch_dtype=torch.float16, device_map="auto"
)
# Define a function to generate responses with the model
def generate_response(prompt):
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.9, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Replace any instance of the internal model name with your bot's identity.
response = response.replace("DeepScaleR", "Shiv Yantra AI")
return response
# ==========================
# Gradio API Setup
# ==========================
def gradio_api(input_text):
return generate_response(input_text)
iface = gr.Interface(fn=gradio_api, inputs="text", outputs="text")
def run_gradio():
iface.launch(server_name="0.0.0.0", server_port=7860, share=False)
# ==========================
# Discord Bot Setup
# ==========================
intents = discord.Intents.default()
intents.message_content = True # Needed to read message contents
client = discord.Client(intents=intents)
# Local endpoint for the Gradio API
GRADIO_API_URL = "http://0.0.0.0:7860/run/predict"
@client.event
async def on_ready():
print(f"Logged in as {client.user}")
@client.event
async def on_message(message):
if message.author == client.user:
return # Avoid replying to self
user_input = message.content.strip()
if user_input:
try:
payload = {"data": [user_input]}
r = requests.post(GRADIO_API_URL, json=payload)
r.raise_for_status()
response_json = r.json()
ai_response = response_json.get("data", ["Sorry, something went wrong."])[0]
except Exception as e:
ai_response = "Error communicating with the AI API."
await message.channel.send(ai_response)
def run_discord_bot():
client.run(DISCORD_TOKEN)
# ==========================
# Start Both Services
# ==========================
if __name__ == "__main__":
# Start the Gradio interface in a daemon thread
threading.Thread(target=run_gradio, daemon=True).start()
# Start the Discord bot in a daemon thread
threading.Thread(target=run_discord_bot, daemon=True).start()
# Keep the main thread alive.
while True:
pass