Spaces:
Runtime error
Runtime error
import os | |
import threading | |
import discord | |
import requests | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from dotenv import load_dotenv | |
# Load environment variables from Hugging Face Secrets (and .env if local) | |
load_dotenv() | |
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN") | |
HF_TOKEN = os.getenv("HF_TOKEN") # Optional: only needed if model repo is private | |
if not DISCORD_TOKEN: | |
raise ValueError("Discord bot token is missing. Set DISCORD_TOKEN in the environment variables.") | |
# Set the model repository name. For DeepScaleR-1.5B-Preview, use: | |
MODEL_NAME = "agentica-org/DeepScaleR-1.5B-Preview" | |
# Load the tokenizer and model. | |
# Using token=HF_TOKEN instead of use_auth_token (per the new deprecation) | |
if HF_TOKEN: | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, token=HF_TOKEN, torch_dtype=torch.float16, device_map="auto" | |
) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_NAME, torch_dtype=torch.float16, device_map="auto" | |
) | |
# Define a function to generate responses with the model | |
def generate_response(prompt): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device) | |
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.9, temperature=0.7) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Replace any instance of the internal model name with your bot's identity. | |
response = response.replace("DeepScaleR", "Shiv Yantra AI") | |
return response | |
# ========================== | |
# Gradio API Setup | |
# ========================== | |
def gradio_api(input_text): | |
return generate_response(input_text) | |
iface = gr.Interface(fn=gradio_api, inputs="text", outputs="text") | |
def run_gradio(): | |
iface.launch(server_name="0.0.0.0", server_port=7860, share=False) | |
# ========================== | |
# Discord Bot Setup | |
# ========================== | |
intents = discord.Intents.default() | |
intents.message_content = True # Needed to read message contents | |
client = discord.Client(intents=intents) | |
# Local endpoint for the Gradio API | |
GRADIO_API_URL = "http://0.0.0.0:7860/run/predict" | |
async def on_ready(): | |
print(f"Logged in as {client.user}") | |
async def on_message(message): | |
if message.author == client.user: | |
return # Avoid replying to self | |
user_input = message.content.strip() | |
if user_input: | |
try: | |
payload = {"data": [user_input]} | |
r = requests.post(GRADIO_API_URL, json=payload) | |
r.raise_for_status() | |
response_json = r.json() | |
ai_response = response_json.get("data", ["Sorry, something went wrong."])[0] | |
except Exception as e: | |
ai_response = "Error communicating with the AI API." | |
await message.channel.send(ai_response) | |
def run_discord_bot(): | |
client.run(DISCORD_TOKEN) | |
# ========================== | |
# Start Both Services | |
# ========================== | |
if __name__ == "__main__": | |
# Start the Gradio interface in a daemon thread | |
threading.Thread(target=run_gradio, daemon=True).start() | |
# Start the Discord bot in a daemon thread | |
threading.Thread(target=run_discord_bot, daemon=True).start() | |
# Keep the main thread alive. | |
while True: | |
pass |