Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,24 @@
|
|
1 |
import os
|
2 |
import threading
|
|
|
3 |
import discord
|
4 |
import torch
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
-
# Load environment variables from Hugging Face Secrets and .env
|
9 |
load_dotenv()
|
10 |
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN")
|
11 |
-
HF_TOKEN = os.getenv("HF_TOKEN") # Optional: only needed if your model
|
12 |
|
13 |
if not DISCORD_TOKEN:
|
14 |
raise ValueError("Discord bot token is missing. Set DISCORD_TOKEN in the environment variables.")
|
15 |
|
16 |
-
# Specify the model repository name.
|
|
|
17 |
MODEL_NAME = "agentica-org/DeepScaleR-1.5B-Preview"
|
18 |
|
19 |
# Load the tokenizer and model.
|
20 |
-
# If HF_TOKEN is provided, use it for authentication.
|
21 |
if HF_TOKEN:
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -29,21 +30,27 @@ else:
|
|
29 |
MODEL_NAME, torch_dtype=torch.float16, device_map="auto"
|
30 |
)
|
31 |
|
32 |
-
# Define a function to generate responses
|
33 |
def generate_response(prompt):
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
36 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
-
# Replace any instance of
|
39 |
response = response.replace("DeepScaleR", "Shiv Yantra AI")
|
40 |
return response
|
41 |
|
42 |
-
#
|
43 |
# Discord Bot Setup
|
44 |
-
#
|
45 |
intents = discord.Intents.default()
|
46 |
-
intents.message_content = True # Required
|
47 |
client = discord.Client(intents=intents)
|
48 |
|
49 |
@client.event
|
@@ -59,23 +66,37 @@ async def on_message(message):
|
|
59 |
user_input = message.content.strip()
|
60 |
if user_input:
|
61 |
try:
|
62 |
-
#
|
63 |
-
ai_response = generate_response
|
64 |
except Exception as e:
|
65 |
-
print(f"Error
|
66 |
ai_response = "Error processing your request."
|
67 |
await message.channel.send(ai_response)
|
68 |
|
69 |
def run_discord_bot():
|
70 |
client.run(DISCORD_TOKEN)
|
71 |
|
72 |
-
#
|
73 |
-
#
|
74 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
if __name__ == "__main__":
|
76 |
-
#
|
|
|
|
|
77 |
threading.Thread(target=run_discord_bot, daemon=True).start()
|
78 |
-
|
79 |
# Keep the main thread alive.
|
80 |
while True:
|
81 |
pass
|
|
|
1 |
import os
|
2 |
import threading
|
3 |
+
import asyncio
|
4 |
import discord
|
5 |
import torch
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
+
# Load environment variables (from Hugging Face Secrets and .env if available)
|
10 |
load_dotenv()
|
11 |
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN")
|
12 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Optional: only needed if your model repo is private
|
13 |
|
14 |
if not DISCORD_TOKEN:
|
15 |
raise ValueError("Discord bot token is missing. Set DISCORD_TOKEN in the environment variables.")
|
16 |
|
17 |
+
# Specify the model repository name.
|
18 |
+
# For DeepScaleR-1.5B-Preview, we use the official repository:
|
19 |
MODEL_NAME = "agentica-org/DeepScaleR-1.5B-Preview"
|
20 |
|
21 |
# Load the tokenizer and model.
|
|
|
22 |
if HF_TOKEN:
|
23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
24 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
30 |
MODEL_NAME, torch_dtype=torch.float16, device_map="auto"
|
31 |
)
|
32 |
|
33 |
+
# Define a function to generate AI responses.
|
34 |
def generate_response(prompt):
|
35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
37 |
+
outputs = model.generate(
|
38 |
+
**inputs,
|
39 |
+
max_new_tokens=200,
|
40 |
+
do_sample=True,
|
41 |
+
top_p=0.9,
|
42 |
+
temperature=0.7
|
43 |
+
)
|
44 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
+
# Replace any instance of the internal model name with the bot's identity.
|
46 |
response = response.replace("DeepScaleR", "Shiv Yantra AI")
|
47 |
return response
|
48 |
|
49 |
+
# --------------------------
|
50 |
# Discord Bot Setup
|
51 |
+
# --------------------------
|
52 |
intents = discord.Intents.default()
|
53 |
+
intents.message_content = True # Required to read message contents
|
54 |
client = discord.Client(intents=intents)
|
55 |
|
56 |
@client.event
|
|
|
66 |
user_input = message.content.strip()
|
67 |
if user_input:
|
68 |
try:
|
69 |
+
# Run the synchronous generate_response function in a separate thread.
|
70 |
+
ai_response = await asyncio.to_thread(generate_response, user_input)
|
71 |
except Exception as e:
|
72 |
+
print(f"Error during generation: {e}")
|
73 |
ai_response = "Error processing your request."
|
74 |
await message.channel.send(ai_response)
|
75 |
|
76 |
def run_discord_bot():
|
77 |
client.run(DISCORD_TOKEN)
|
78 |
|
79 |
+
# --------------------------
|
80 |
+
# (Optional) Gradio Interface Setup
|
81 |
+
# --------------------------
|
82 |
+
# If you want a web UI (you can disable this if not needed)
|
83 |
+
import gradio as gr
|
84 |
+
def gradio_api(input_text):
|
85 |
+
return generate_response(input_text)
|
86 |
+
iface = gr.Interface(fn=gradio_api, inputs="text", outputs="text", title="Shiv Yantra AI")
|
87 |
+
|
88 |
+
def run_gradio():
|
89 |
+
iface.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
90 |
+
|
91 |
+
# --------------------------
|
92 |
+
# Start Services Concurrently
|
93 |
+
# --------------------------
|
94 |
if __name__ == "__main__":
|
95 |
+
# Optionally, start the Gradio interface in a daemon thread.
|
96 |
+
threading.Thread(target=run_gradio, daemon=True).start()
|
97 |
+
# Start the Discord bot in a separate thread.
|
98 |
threading.Thread(target=run_discord_bot, daemon=True).start()
|
99 |
+
|
100 |
# Keep the main thread alive.
|
101 |
while True:
|
102 |
pass
|