Hardik5456 commited on
Commit
5162ccd
·
verified ·
1 Parent(s): 8e4a95d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -97
app.py CHANGED
@@ -1,101 +1,10 @@
1
  import gradio as gr
2
- from transformers import AutoModelForCausalLM, AutoTokenizer
3
- import torch
4
- import os
5
 
6
- # Enable faster downloads with hf_transfer
7
- os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
8
-
9
- # Retrieve token from environment (set in Space secrets if gated)
10
- HF_TOKEN = os.getenv("HF_TOKEN")
11
- if not HF_TOKEN:
12
- print("Warning: HF_TOKEN not found. If the model is gated, it will fail to load.")
13
-
14
- # Model repository ID (replace with your specific DeepscaleR model if different)
15
- MODEL_ID = "agentica-org/DeepScaleR-1.5B-Preview"
16
-
17
- # Load model and tokenizer
18
- def load_model():
19
- try:
20
- tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
21
- model = AutoModelForCausalLM.from_pretrained(MODEL_ID, token=HF_TOKEN)
22
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
- model.to(device)
24
- return tokenizer, model, device
25
- except Exception as e:
26
- return None, None, str(e)
27
-
28
- # Load model at startup
29
- tokenizer, model, load_error = load_model()
30
-
31
- # Inference function with reasoning
32
- def generate_text(input_text):
33
- if load_error or tokenizer is None or model is None:
34
- return f"Model failed to load: {load_error}", "Unable to proceed due to model loading error."
35
 
36
- try:
37
- reasoning = "Step 1: Tokenizing the input text...\n"
38
- inputs = tokenizer(input_text, return_tensors="pt").to(device)
39
- reasoning += f"Input tokenized into {inputs['input_ids'].shape[1]} tokens.\n"
40
-
41
- reasoning += "Step 2: Running the DeepscaleR model for generation...\n"
42
- outputs = model.generate(
43
- inputs["input_ids"],
44
- max_length=100,
45
- num_return_sequences=1,
46
- temperature=0.7,
47
- do_sample=True
48
- )
49
- reasoning += f"Generated {outputs.shape[1]} tokens.\n"
50
-
51
- reasoning += "Step 3: Decoding the output tokens into readable text...\n"
52
- generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
53
- reasoning += "Decoding complete.\n"
54
-
55
- reasoning += "Step 4: Finalizing the response.\n"
56
- return generated_text, reasoning
57
- except Exception as e:
58
- error_msg = f"Error: {str(e)}"
59
- return error_msg, f"Failed due to: {error_msg}"
60
-
61
- # Custom CSS for black theme
62
- custom_css = """
63
- body { background-color: #1a1a1a; color: #ffffff; }
64
- .gr-box { background-color: #2b2b2b; border: 1px solid #444444; border-radius: 5px; }
65
- .gr-button { background-color: #4a4a4a; color: #ffffff; border: none; }
66
- .gr-button:hover { background-color: #5a5a5a; }
67
- .gr-textbox, .gr-textarea { background-color: #333333; color: #ffffff; border: 1px solid #555555; }
68
- h1, h2, h3 { color: #ffffff; }
69
- """
70
-
71
- # Gradio interface
72
- with gr.Blocks(css=custom_css, theme="default") as demo:
73
- gr.Markdown(
74
- """
75
- # DeepscaleR Model Demo
76
- A sleek, professional interface powered by xAI's Grok-inspired design.
77
- Enter text below to see the DeepscaleR model's output and reasoning process.
78
- """
79
- )
80
-
81
- with gr.Row():
82
- with gr.Column(scale=1):
83
- input_text = gr.Textbox(
84
- label="Input Text",
85
- placeholder="Type your input here...",
86
- lines=3
87
- )
88
- submit_btn = gr.Button("Generate")
89
-
90
- with gr.Column(scale=2):
91
- output_text = gr.Textbox(label="Generated Output", lines=5)
92
- reasoning_text = gr.Textbox(label="Reasoning Process", lines=10)
93
-
94
- submit_btn.click(
95
- fn=generate_text,
96
- inputs=input_text,
97
- outputs=[output_text, reasoning_text]
98
- )
99
-
100
- # Launch the app
101
  demo.launch()
 
1
  import gradio as gr
 
 
 
2
 
3
+ with gr.Blocks(fill_height=True) as demo:
4
+ with gr.Sidebar():
5
+ gr.Markdown("# Inference Provider")
6
+ gr.Markdown("This Space showcases the agentica-org/DeepScaleR-1.5B-Preview model, served by the hf-inference API. Sign in with your Hugging Face account to use this API.")
7
+ button = gr.LoginButton("Sign in")
8
+ gr.load("models/agentica-org/DeepScaleR-1.5B-Preview", accept_token=button, provider="hf-inference")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  demo.launch()