Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,22 +2,22 @@ import os
|
|
2 |
import threading
|
3 |
import discord
|
4 |
import torch
|
5 |
-
import gradio as gr
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from dotenv import load_dotenv
|
8 |
|
9 |
-
# Load environment variables
|
10 |
load_dotenv()
|
11 |
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN")
|
12 |
-
HF_TOKEN = os.getenv("HF_TOKEN") # Optional: only if
|
13 |
|
14 |
if not DISCORD_TOKEN:
|
15 |
raise ValueError("Discord bot token is missing. Set DISCORD_TOKEN in the environment variables.")
|
16 |
|
17 |
-
#
|
18 |
MODEL_NAME = "agentica-org/DeepScaleR-1.5B-Preview"
|
19 |
|
20 |
-
# Load the tokenizer and model.
|
|
|
21 |
if HF_TOKEN:
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -29,29 +29,18 @@ else:
|
|
29 |
MODEL_NAME, torch_dtype=torch.float16, device_map="auto"
|
30 |
)
|
31 |
|
32 |
-
#
|
33 |
def generate_response(prompt):
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
36 |
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.9, temperature=0.7)
|
37 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
-
#
|
39 |
response = response.replace("DeepScaleR", "Shiv Yantra AI")
|
40 |
return response
|
41 |
|
42 |
# ==========================
|
43 |
-
#
|
44 |
-
# ==========================
|
45 |
-
def gradio_api(input_text):
|
46 |
-
return generate_response(input_text)
|
47 |
-
|
48 |
-
iface = gr.Interface(fn=gradio_api, inputs="text", outputs="text", title="Shiv Yantra AI")
|
49 |
-
|
50 |
-
def run_gradio():
|
51 |
-
iface.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
52 |
-
|
53 |
-
# ==========================
|
54 |
-
# Discord Bot Setup (Directly uses local generate_response)
|
55 |
# ==========================
|
56 |
intents = discord.Intents.default()
|
57 |
intents.message_content = True # Required for reading message content
|
@@ -63,16 +52,17 @@ async def on_ready():
|
|
63 |
|
64 |
@client.event
|
65 |
async def on_message(message):
|
66 |
-
#
|
67 |
if message.author == client.user:
|
68 |
return
|
69 |
|
70 |
user_input = message.content.strip()
|
71 |
if user_input:
|
72 |
try:
|
73 |
-
# Directly call the local
|
74 |
ai_response = generate_response(user_input)
|
75 |
except Exception as e:
|
|
|
76 |
ai_response = "Error processing your request."
|
77 |
await message.channel.send(ai_response)
|
78 |
|
@@ -80,14 +70,12 @@ def run_discord_bot():
|
|
80 |
client.run(DISCORD_TOKEN)
|
81 |
|
82 |
# ==========================
|
83 |
-
# Start
|
84 |
# ==========================
|
85 |
if __name__ == "__main__":
|
86 |
-
#
|
87 |
-
threading.Thread(target=run_gradio, daemon=True).start()
|
88 |
-
# Start the Discord bot in a separate thread
|
89 |
threading.Thread(target=run_discord_bot, daemon=True).start()
|
90 |
|
91 |
-
# Keep the main thread alive
|
92 |
while True:
|
93 |
pass
|
|
|
2 |
import threading
|
3 |
import discord
|
4 |
import torch
|
|
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
from dotenv import load_dotenv
|
7 |
|
8 |
+
# Load environment variables from Hugging Face Secrets and .env (if available)
|
9 |
load_dotenv()
|
10 |
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN")
|
11 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Optional: only needed if your model repository is private
|
12 |
|
13 |
if not DISCORD_TOKEN:
|
14 |
raise ValueError("Discord bot token is missing. Set DISCORD_TOKEN in the environment variables.")
|
15 |
|
16 |
+
# Specify the model repository name. For DeepScaleR-1.5B-Preview use the official repo:
|
17 |
MODEL_NAME = "agentica-org/DeepScaleR-1.5B-Preview"
|
18 |
|
19 |
+
# Load the tokenizer and model.
|
20 |
+
# If HF_TOKEN is provided, use it for authentication.
|
21 |
if HF_TOKEN:
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HF_TOKEN)
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
29 |
MODEL_NAME, torch_dtype=torch.float16, device_map="auto"
|
30 |
)
|
31 |
|
32 |
+
# Define a function to generate responses using the model.
|
33 |
def generate_response(prompt):
|
34 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024).to(device)
|
36 |
outputs = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_p=0.9, temperature=0.7)
|
37 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
+
# Replace any instance of "DeepScaleR" with "Shiv Yantra AI" to enforce the bot's identity.
|
39 |
response = response.replace("DeepScaleR", "Shiv Yantra AI")
|
40 |
return response
|
41 |
|
42 |
# ==========================
|
43 |
+
# Discord Bot Setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# ==========================
|
45 |
intents = discord.Intents.default()
|
46 |
intents.message_content = True # Required for reading message content
|
|
|
52 |
|
53 |
@client.event
|
54 |
async def on_message(message):
|
55 |
+
# Skip messages from the bot itself.
|
56 |
if message.author == client.user:
|
57 |
return
|
58 |
|
59 |
user_input = message.content.strip()
|
60 |
if user_input:
|
61 |
try:
|
62 |
+
# Directly call the local function instead of making an HTTP request.
|
63 |
ai_response = generate_response(user_input)
|
64 |
except Exception as e:
|
65 |
+
print(f"Error generating response: {e}")
|
66 |
ai_response = "Error processing your request."
|
67 |
await message.channel.send(ai_response)
|
68 |
|
|
|
70 |
client.run(DISCORD_TOKEN)
|
71 |
|
72 |
# ==========================
|
73 |
+
# Start the Discord Bot
|
74 |
# ==========================
|
75 |
if __name__ == "__main__":
|
76 |
+
# Run the Discord bot on a separate thread.
|
|
|
|
|
77 |
threading.Thread(target=run_discord_bot, daemon=True).start()
|
78 |
|
79 |
+
# Keep the main thread alive.
|
80 |
while True:
|
81 |
pass
|