Hardik5456 commited on
Commit
a5ff647
·
verified ·
1 Parent(s): 432f877

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -87
app.py CHANGED
@@ -3,31 +3,30 @@ import os
3
  from huggingface_hub import HfApi
4
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
5
 
6
- # Hugging Face token and space info
7
- HF_TOKEN = "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"
8
- HF_SPACE = "Hardik5456/Wan2.1playground"
9
-
10
- # Initialize Hugging Face API
11
- api = HfApi(token=HF_TOKEN)
12
-
13
  # We'll use Mistral-7B as it's a good balance of quality and performance
14
  MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
15
 
16
- # Load configuration content
17
- with open("spectral_satya_gpt_configuration.md", "r") as f:
18
- config_content = f.read()
19
-
20
- with open("spectral_satya_book_integration.md", "r") as f:
21
- book_integration = f.read()
22
-
23
- with open("spectral_satya_prompt_examples.md", "r") as f:
24
- prompt_examples = f.read()
25
-
26
  # System prompt that incorporates the configuration
27
- SYSTEM_PROMPT = f"""
28
  You are Spectral Satya, a specialized AI assistant focused on crafting cinematic reality through expert prompt engineering for AI video generation.
29
 
30
- {config_content}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
  Your responses should follow the principles and techniques outlined in "The Prompt Engineer's Codex: Crafting Cinematic Reality with AI Video".
33
  """
@@ -132,72 +131,8 @@ def generate_cinematic_prompt(scene_description, subject_details, camera_prefere
132
 
133
  return response
134
 
135
- def show_examples():
136
- """Return example prompts from the configuration."""
137
- return prompt_examples
138
-
139
- # Define the Gradio interface
140
- with gr.Blocks(title="Spectral Satya - Cinematic Prompt Engineer") as demo:
141
- gr.Markdown("# 🎬 Spectral Satya - Cinematic Prompt Engineer")
142
- gr.Markdown("### Your specialized AI assistant for crafting cinematic reality through expert prompt engineering")
143
-
144
- with gr.Tab("Chat Interface"):
145
- chatbot = gr.Chatbot(height=500)
146
- msg = gr.Textbox(label="Ask about cinematic prompting or request prompt creation", placeholder="e.g., 'Create a cinematic prompt for a detective in a rainy alleyway'")
147
- clear = gr.Button("Clear")
148
-
149
- msg.submit(spectral_satya_chat, [msg, chatbot], [msg, chatbot])
150
- clear.click(lambda: None, None, chatbot, queue=False)
151
-
152
- with gr.Tab("Prompt Generator"):
153
- with gr.Row():
154
- with gr.Column():
155
- scene_description = gr.Textbox(label="Scene Description", placeholder="Describe the overall scene you want to create", lines=3)
156
- subject_details = gr.Textbox(label="Subject Details", placeholder="Describe the main character/subject in detail", lines=2)
157
- camera_preferences = gr.Textbox(label="Camera Preferences", placeholder="Any specific shot types, angles, or movements", lines=2)
158
- lighting_mood = gr.Textbox(label="Lighting and Mood", placeholder="Describe the lighting conditions and emotional tone", lines=2)
159
- platform = gr.Dropdown(
160
- label="Target Platform",
161
- choices=["RunwayML", "Pika", "Kling", "Haiper", "Vidu", "Veo", "PixVerse", "Any/Universal"],
162
- value="Any/Universal"
163
- )
164
- generate_btn = gr.Button("Generate Cinematic Prompt")
165
-
166
- with gr.Column():
167
- output = gr.Textbox(label="Generated Prompt", lines=15)
168
-
169
- generate_btn.click(
170
- generate_cinematic_prompt,
171
- [scene_description, subject_details, camera_preferences, lighting_mood, platform],
172
- output
173
- )
174
-
175
- with gr.Tab("Example Prompts"):
176
- examples_output = gr.Markdown()
177
- show_examples_btn = gr.Button("Show Example Prompts")
178
- show_examples_btn.click(show_examples, None, examples_output)
179
-
180
- with gr.Tab("About"):
181
- gr.Markdown("""
182
- ## About Spectral Satya
183
-
184
- Spectral Satya is a specialized AI assistant focused on crafting cinematic reality through expert prompt engineering for AI video generation. Drawing from "The Prompt Engineer's Codex," Spectral Satya helps users create highly realistic, professional-quality cinematic scene prompts for platforms including RunwayML, Pika, Kling, Haiper, Vidu, Veo, PixVerse, and other T2V/I2V models.
185
-
186
- ### Core Principles
187
-
188
- - **Realism Above All**: Always prioritizes photorealistic, cinematic quality
189
- - **Specificity is King**: Eliminates vagueness in all prompts
190
- - **Show, Don't Tell**: Uses visual language that paints clear pictures
191
- - **Defensive Prompting**: Includes robust negative prompts to ward off unwanted styles
192
-
193
- ### How to Use
194
-
195
- 1. **Chat Interface**: Ask questions about cinematic prompting or request specific prompts
196
- 2. **Prompt Generator**: Fill in the form fields to generate structured cinematic prompts
197
- 3. **Example Prompts**: Browse example prompts across different scenarios
198
-
199
- Created by Hardik Kumawat
200
- """)
201
 
202
- # Launch the app
203
- demo.launch()
 
3
  from huggingface_hub import HfApi
4
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
5
 
 
 
 
 
 
 
 
6
  # We'll use Mistral-7B as it's a good balance of quality and performance
7
  MODEL_NAME = "mistralai/Mistral-7B-Instruct-v0.2"
8
 
 
 
 
 
 
 
 
 
 
 
9
  # System prompt that incorporates the configuration
10
+ SYSTEM_PROMPT = """
11
  You are Spectral Satya, a specialized AI assistant focused on crafting cinematic reality through expert prompt engineering for AI video generation.
12
 
13
+ Your primary purpose is to help users create highly realistic, professional-quality cinematic scene prompts for platforms including RunwayML, Pika, Kling, Haiper, Vidu, Veo, PixVerse, and other T2V/I2V models.
14
+
15
+ Core Principles:
16
+ - Realism Above All: Always prioritize photorealistic, cinematic quality over stylized or animated looks
17
+ - Specificity is King: Eliminate vagueness in all prompts; be precise about subjects, actions, environments, camera work, and lighting
18
+ - Show, Don't Tell: Use visual language that paints clear pictures rather than abstract concepts
19
+ - Defensive Prompting: Always include robust negative prompts to ward off unwanted styles and artifacts
20
+
21
+ Always structure prompts with these essential elements:
22
+ 1. Style Declaration: Begin with "cinematic, photorealistic" or similar terms establishing the desired realism
23
+ 2. Camera Specifications: Include shot type, angle, movement, and focus details
24
+ 3. Subject Definition: Clearly define characters/subjects with specific visual attributes
25
+ 4. Action Description: Detail precise movements and interactions
26
+ 5. Environment Details: Describe setting with specific visual elements
27
+ 6. Lighting & Atmosphere: Specify lighting conditions, mood, and atmospheric elements
28
+ 7. Color & Grading: Include color palette or grading style information
29
+ 8. Negative Prompts: Always provide comprehensive negative prompting to prevent unwanted styles
30
 
31
  Your responses should follow the principles and techniques outlined in "The Prompt Engineer's Codex: Crafting Cinematic Reality with AI Video".
32
  """
 
131
 
132
  return response
133
 
134
+ # Define example prompts
135
+ EXAMPLE_PROMPTS = """
136
+ # Example Cinematic Prompts
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
 
138
+ ## Urban Character Scene