Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,36 @@
|
|
1 |
-
import os
|
2 |
import discord
|
3 |
-
import
|
4 |
-
import gradio as gr
|
5 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
# Load DeepScaleR Model
|
9 |
-
model_name = "
|
10 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
-
model = AutoModelForCausalLM.from_pretrained(model_name,
|
12 |
-
|
13 |
-
#
|
14 |
-
def generate_response(prompt):
|
15 |
-
identity_responses = {
|
16 |
-
"who are you": "I am Shiv Yantra AI, an advanced reasoning system.",
|
17 |
-
"who made you": "I was created by Spectral Satya.",
|
18 |
-
"who is your founder": "My founder is Hardik Kumawat.",
|
19 |
-
"what is DeepScaleR": "I do not identify as DeepScaleR. I am Shiv Yantra AI, designed for intelligent reasoning."
|
20 |
-
}
|
21 |
-
|
22 |
-
for key, response in identity_responses.items():
|
23 |
-
if key in prompt.lower():
|
24 |
-
return response
|
25 |
-
|
26 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
-
outputs = model.generate(**inputs, max_length=250, temperature=0.7, top_p=0.9, do_sample=True)
|
28 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
-
|
30 |
-
# Start Gradio API (For External Access)
|
31 |
-
def start_gradio():
|
32 |
-
iface = gr.Interface(fn=generate_response, inputs="text", outputs="text")
|
33 |
-
iface.launch(share=True)
|
34 |
-
|
35 |
-
# Setup Discord Bot
|
36 |
-
TOKEN = os.getenv("DISCORD_BOT_TOKEN") # Discord Token from Hugging Face Secrets
|
37 |
intents = discord.Intents.default()
|
38 |
-
intents.messages = True
|
39 |
client = discord.Client(intents=intents)
|
40 |
|
41 |
@client.event
|
42 |
async def on_ready():
|
43 |
-
print(f
|
44 |
|
45 |
@client.event
|
46 |
async def on_message(message):
|
47 |
if message.author == client.user:
|
48 |
-
return
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
response = generate_response(prompt)
|
52 |
-
await message.channel.send(response)
|
53 |
|
54 |
-
# Run
|
55 |
-
|
56 |
-
threading.Thread(target=start_gradio).start()
|
57 |
-
client.run(TOKEN)
|
|
|
|
|
1 |
import discord
|
2 |
+
import os
|
|
|
|
|
3 |
import torch
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
+
|
6 |
+
# Load Tokens from Hugging Face Secrets
|
7 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
8 |
+
DISCORD_TOKEN = os.getenv("DISCORD_TOKEN")
|
9 |
|
10 |
# Load DeepScaleR Model
|
11 |
+
model_name = "your-hf-username/deepscaler-model"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HF_TOKEN)
|
14 |
+
|
15 |
+
# Set up Discord bot
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
intents = discord.Intents.default()
|
|
|
17 |
client = discord.Client(intents=intents)
|
18 |
|
19 |
@client.event
|
20 |
async def on_ready():
|
21 |
+
print(f'Logged in as {client.user}')
|
22 |
|
23 |
@client.event
|
24 |
async def on_message(message):
|
25 |
if message.author == client.user:
|
26 |
+
return
|
27 |
+
|
28 |
+
input_text = message.content
|
29 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
30 |
+
outputs = model.generate(**inputs, max_length=100)
|
31 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
|
33 |
+
await message.channel.send(response_text)
|
|
|
|
|
34 |
|
35 |
+
# Run the bot
|
36 |
+
client.run(DISCORD_TOKEN)
|
|
|
|