Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
from ultralytics import YOLO, solutions
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from collections import defaultdict
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
9 |
+
print("Device:", device)
|
10 |
+
|
11 |
+
# Load MiDaS model for depth estimation
|
12 |
+
midas = torch.hub.load("intel-isl/MiDaS", "MiDaS_small")
|
13 |
+
midas.to(device)
|
14 |
+
midas.eval()
|
15 |
+
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms").small_transform
|
16 |
+
|
17 |
+
# Load YOLO model
|
18 |
+
model = YOLO('yolov8x.pt')
|
19 |
+
names = model.model.names
|
20 |
+
model.to(device)
|
21 |
+
|
22 |
+
pixels_per_meter = 300
|
23 |
+
unattended_threshold = 2.0 # meters
|
24 |
+
|
25 |
+
dist_obj = solutions.DistanceCalculation(names=names, view_img=False, pixels_per_meter=pixels_per_meter)
|
26 |
+
|
27 |
+
# Set model parameters
|
28 |
+
model.overrides['conf'] = 0.5 # NMS confidence threshold
|
29 |
+
model.overrides['iou'] = 0.5 # NMS IoU threshold
|
30 |
+
model.overrides['agnostic_nms'] = True # NMS class-agnostic
|
31 |
+
model.overrides['max_det'] = 1000 # maximum number of detections per image
|
32 |
+
|
33 |
+
# Store scores for each person-luggage pair using tracker ID
|
34 |
+
ownership_scores = defaultdict(lambda: defaultdict(int))
|
35 |
+
|
36 |
+
def calculate_distance(depth_map, point1, point2):
|
37 |
+
dist_2d_m, dist_2d_mm = dist_obj.calculate_distance(point1, point2)
|
38 |
+
z1 = depth_map[int(point1[1]), int(point1[0])] / pixels_per_meter
|
39 |
+
z2 = depth_map[int(point2[1]), int(point2[0])] / pixels_per_meter
|
40 |
+
depth_diff = np.abs(z1 - z2)
|
41 |
+
distance = np.sqrt(dist_2d_m ** 2 + depth_diff ** 2)
|
42 |
+
return distance
|
43 |
+
|
44 |
+
def process_video(video_source):
|
45 |
+
cap = cv2.VideoCapture(video_source)
|
46 |
+
if not cap.isOpened():
|
47 |
+
print("Error: Could not open video.")
|
48 |
+
return
|
49 |
+
|
50 |
+
owners = {} # Store assigned owners for luggage using tracker ID
|
51 |
+
abandoned_luggages = set() # Store abandoned luggage using tracker ID
|
52 |
+
|
53 |
+
frame_count = 0
|
54 |
+
output_frames = [] # Store the processed frames to return as video
|
55 |
+
|
56 |
+
while cap.isOpened():
|
57 |
+
ret, frame = cap.read()
|
58 |
+
frame_count += 1
|
59 |
+
if not ret:
|
60 |
+
break
|
61 |
+
if frame_count % 10 != 0:
|
62 |
+
continue
|
63 |
+
results = model.track(frame, persist=True, classes=[0, 28, 24, 26], show=False)
|
64 |
+
frame_ = results[0].plot()
|
65 |
+
|
66 |
+
# MiDaS depth estimation
|
67 |
+
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
68 |
+
input_batch = midas_transforms(img).to(device)
|
69 |
+
with torch.no_grad():
|
70 |
+
prediction = midas(input_batch)
|
71 |
+
prediction = torch.nn.functional.interpolate(
|
72 |
+
prediction.unsqueeze(1),
|
73 |
+
size=img.shape[:2],
|
74 |
+
mode="bicubic",
|
75 |
+
align_corners=False,
|
76 |
+
).squeeze()
|
77 |
+
depth_map = prediction.cpu().numpy()
|
78 |
+
|
79 |
+
persons = []
|
80 |
+
luggages = []
|
81 |
+
num_boxes = len(results[0].boxes)
|
82 |
+
for i in range(num_boxes):
|
83 |
+
box = results[0].boxes[i]
|
84 |
+
centroid = get_centroid(box)
|
85 |
+
track_id = box.id
|
86 |
+
if box.cls == 0:
|
87 |
+
persons.append((track_id, centroid))
|
88 |
+
elif box.cls in [24, 28, 26]:
|
89 |
+
luggages.append((track_id, centroid))
|
90 |
+
|
91 |
+
for person_id, person_centroid in persons:
|
92 |
+
for luggage_id, luggage_centroid in luggages:
|
93 |
+
distance_m = calculate_distance(depth_map, person_centroid, luggage_centroid)
|
94 |
+
if distance_m <= unattended_threshold and luggage_id not in abandoned_luggages:
|
95 |
+
ownership_scores[luggage_id][person_id] += 1
|
96 |
+
|
97 |
+
for luggage_id, luggage_centroid in luggages:
|
98 |
+
person_in_range = any(
|
99 |
+
calculate_distance(depth_map, person_centroid, luggage_centroid) <= unattended_threshold
|
100 |
+
for person_id, person_centroid in persons
|
101 |
+
)
|
102 |
+
|
103 |
+
if not person_in_range and luggage_id not in abandoned_luggages:
|
104 |
+
abandoned_luggages.add(luggage_id)
|
105 |
+
|
106 |
+
# Visualization
|
107 |
+
for box in results[0].boxes:
|
108 |
+
xyxy = box.xyxy[0].cpu().numpy().astype(int)
|
109 |
+
cv2.rectangle(frame_, (xyxy[0], xyxy[1]), (xyxy[2], xyxy[3]), (0, 255, 0), 2)
|
110 |
+
centroid = get_centroid(box)
|
111 |
+
cv2.circle(frame_, (int(centroid[0]), int(centroid[1])), 5, (0, 255, 0), -1)
|
112 |
+
|
113 |
+
output_frames.append(frame_)
|
114 |
+
|
115 |
+
cap.release()
|
116 |
+
cv2.destroyAllWindows()
|
117 |
+
|
118 |
+
return output_frames
|
119 |
+
|
120 |
+
def get_centroid(box):
|
121 |
+
return dist_obj.calculate_centroid(box.xyxy[0].cpu().numpy().astype(int))
|
122 |
+
|
123 |
+
def video_interface(video):
|
124 |
+
processed_frames = process_video(video)
|
125 |
+
return processed_frames[0] if processed_frames else None
|
126 |
+
|
127 |
+
# Create a Gradio interface
|
128 |
+
interface = gr.Interface(fn=video_interface, inputs="video", outputs="video", title="Abandoned Object Detection")
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
interface.launch()
|