QueryExpansion / app.py
HarryLee's picture
Add application file
39caa01
raw
history blame
4.98 kB
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image
import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
############
## Main page
############
st.write("# Code for Query Expansion")
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('top.png')
st.image(image)
st.sidebar.write("# Parameter Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 10, 1, key='ehikwegrjifbwreuk')
user_query = st_tags(
label='# Enter Query:',
text='Press enter to add more',
value=['Mother'],
suggestions=['five', 'six', 'seven', 'eight', 'nine', 'three', 'eleven', 'ten', 'four'],
maxtags=maxtags_sidebar,
key="aljnf")
# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
'Which transformers model would you like to be selected?',
('multi-qa-MiniLM-L6-cos-v1'))
option2 = st.sidebar.selectbox(
'Which corss-encoder model would you like to be selected?',
('cross-encoder/ms-marco-MiniLM-L-6-v2'))
if not torch.cuda.is_available():
print("Warning: No GPU found. Please add GPU to your notebook")
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1)
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2)
# As dataset, we use Simple English Wikipedia. Compared to the full English wikipedia, it has only
# about 170k articles. We split these articles into paragraphs and encode them with the bi-encoder
etsy_filepath = '000000000001.json'
#if not os.path.exists(wikipedia_filepath):
# util.http_get('http://sbert.net/datasets/simplewiki-2020-11-01.jsonl.gz', wikipedia_filepath)
passages = []
'''
with gzip.open(wikipedia_filepath, 'rt', encoding='utf8') as fIn:
for line in fIn:
data = json.loads(line.strip())
#Add all paragraphs
#passages.extend(data['paragraphs'])
#Only add the first paragraph
passages.append(data['paragraphs'][0])
'''
with open(etsy_filepath, 'r') as EtsyJson:
for line in EtsyJson:
data = json.loads(line.strip())
#passages.append(data['query'])
passages.append(data['title'])
print("Passages:", len(passages))
# We encode all passages into our vector space. This takes about 5 minutes (depends on your GPU speed)
corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True)
# This function will search all wikipedia articles for passages that
# answer the query
def search(query):
print("Input question:", query)
##### BM25 search (lexical search) #####
#bm25_scores = bm25.get_scores(bm25_tokenizer(query))
#top_n = np.argpartition(bm25_scores, -5)[-5:]
#bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
#bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
#print("Top-10 lexical search (BM25) hits")
#for hit in bm25_hits[0:10]:
# print("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']].replace("\n", " ")))
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
query_embedding = query_embedding.cuda()
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-10 hits from bi-encoder
print("\n-------------------------\n")
print("Top-10 Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
for hit in hits[0:10]:
print("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']].replace("\n", " ")))
# Output of top-10 hits from re-ranker
print("\n-------------------------\n")
print("Top-10 Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
for hit in hits[0:10]:
print("\t{:.3f}\t{}".format(hit['cross-score'], passages[hit['corpus_id']].replace("\n", " ")))
st.write("## Results:")
if st.button('Generate Sentence'):
out = search(query = user_query)