HarryLee commited on
Commit
927223b
·
1 Parent(s): ae9bda3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -33
app.py CHANGED
@@ -43,7 +43,6 @@ st.sidebar.success("Load Successfully!")
43
  if not torch.cuda.is_available():
44
  print("Warning: No GPU found. Please add GPU to your notebook")
45
 
46
-
47
  #We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
48
  bi_encoder = SentenceTransformer(option1)
49
  bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
@@ -52,38 +51,13 @@ top_k = 32 #Number of passages we want to retrieve with
52
  #The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
53
  cross_encoder = CrossEncoder(option2)
54
 
55
- # As dataset, we use Simple English Wikipedia. Compared to the full English wikipedia, it has only
56
- # about 170k articles. We split these articles into paragraphs and encode them with the bi-encoder
57
-
58
- etsy_filepath = '000000000001.json'
59
-
60
- #if not os.path.exists(wikipedia_filepath):
61
- # util.http_get('http://sbert.net/datasets/simplewiki-2020-11-01.jsonl.gz', wikipedia_filepath)
62
-
63
- passages = []
64
- '''
65
- with gzip.open(wikipedia_filepath, 'rt', encoding='utf8') as fIn:
66
- for line in fIn:
67
- data = json.loads(line.strip())
68
-
69
- #Add all paragraphs
70
- #passages.extend(data['paragraphs'])
71
-
72
- #Only add the first paragraph
73
- passages.append(data['paragraphs'][0])
74
- '''
75
-
76
- with open(etsy_filepath, 'r') as EtsyJson:
77
- for line in EtsyJson:
78
- data = json.loads(line.strip())
79
- #passages.append(data['query'])
80
- passages.append(data['title'])
81
-
82
-
83
- print("Passages:", len(passages))
84
-
85
- # We encode all passages into our vector space. This takes about 5 minutes (depends on your GPU speed)
86
- corpus_embeddings = bi_encoder.encode(passages, convert_to_tensor=True, show_progress_bar=True)
87
 
88
  # This function will search all wikipedia articles for passages that
89
  # answer the query
 
43
  if not torch.cuda.is_available():
44
  print("Warning: No GPU found. Please add GPU to your notebook")
45
 
 
46
  #We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
47
  bi_encoder = SentenceTransformer(option1)
48
  bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
 
51
  #The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
52
  cross_encoder = CrossEncoder(option2)
53
 
54
+ # load pre-train embeedings files
55
+ embedding_cache_path = 'etsy-embeddings.pkl'
56
+ print("Load pre-computed embeddings from disc")
57
+ with open(embedding_cache_path, "rb") as fIn:
58
+ cache_data = pickle.load(fIn)
59
+ corpus_sentences = cache_data['sentences']
60
+ corpus_embeddings = cache_data['embeddings']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  # This function will search all wikipedia articles for passages that
63
  # answer the query