Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -41,8 +41,8 @@ option2 = st.sidebar.selectbox(
|
|
41 |
|
42 |
st.sidebar.success("Load Successfully!")
|
43 |
|
44 |
-
if not torch.cuda.is_available():
|
45 |
-
print("Warning: No GPU found. Please add GPU to your notebook")
|
46 |
|
47 |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
48 |
bi_encoder = SentenceTransformer(option1)
|
@@ -53,7 +53,7 @@ top_k = 32 #Number of passages we want to retrieve with
|
|
53 |
cross_encoder = CrossEncoder(option2)
|
54 |
|
55 |
# load pre-train embeedings files
|
56 |
-
embedding_cache_path = 'etsy-embeddings.pkl'
|
57 |
print("Load pre-computed embeddings from disc")
|
58 |
with open(embedding_cache_path, "rb") as fIn:
|
59 |
cache_data = pickle.load(fIn)
|
@@ -67,7 +67,7 @@ def search(query):
|
|
67 |
##### Sematic Search #####
|
68 |
# Encode the query using the bi-encoder and find potentially relevant passages
|
69 |
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
70 |
-
query_embedding = query_embedding.cuda()
|
71 |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
|
72 |
hits = hits[0] # Get the hits for the first query
|
73 |
|
|
|
41 |
|
42 |
st.sidebar.success("Load Successfully!")
|
43 |
|
44 |
+
#if not torch.cuda.is_available():
|
45 |
+
# print("Warning: No GPU found. Please add GPU to your notebook")
|
46 |
|
47 |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
|
48 |
bi_encoder = SentenceTransformer(option1)
|
|
|
53 |
cross_encoder = CrossEncoder(option2)
|
54 |
|
55 |
# load pre-train embeedings files
|
56 |
+
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
|
57 |
print("Load pre-computed embeddings from disc")
|
58 |
with open(embedding_cache_path, "rb") as fIn:
|
59 |
cache_data = pickle.load(fIn)
|
|
|
67 |
##### Sematic Search #####
|
68 |
# Encode the query using the bi-encoder and find potentially relevant passages
|
69 |
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
|
70 |
+
#query_embedding = query_embedding.cuda()
|
71 |
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
|
72 |
hits = hits[0] # Get the hits for the first query
|
73 |
|