HarryLee's picture
Update app.py
cea67ad
raw
history blame
9.89 kB
import streamlit as st
from streamlit_tags import st_tags, st_tags_sidebar
from keytotext import pipeline
from PIL import Image
import json
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import gzip
import os
import torch
import pickle
import random
import numpy as np
############
## Main page
############
st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)")
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***")
image = Image.open('etsy-shop-LLC.png')
st.image(image)
st.sidebar.write("# Top-N Selection")
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk')
#user_query = st_tags(
# label='# Enter Query:',
# text='Press enter to add more',
# value=['Mother'],
# suggestions=['gift', 'nike', 'wool'],
# maxtags=maxtags_sidebar,
# key="aljnf")
user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...")
# Add selectbox in streamlit
option1 = st.sidebar.selectbox(
'Which transformers model would you like to be selected?',
('multi-qa-MiniLM-L6-cos-v1','null','null'))
option2 = st.sidebar.selectbox(
'Which corss-encoder model would you like to be selected?',
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null'))
st.sidebar.success("Load Successfully!")
#if not torch.cuda.is_available():
# print("Warning: No GPU found. Please add GPU to your notebook")
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search
bi_encoder = SentenceTransformer(option1,device='cpu')
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
cross_encoder = CrossEncoder(option2, device='cpu')
passages = []
# load pre-train embeedings files
embedding_cache_path = 'etsy-embeddings-cpu.pkl'
print("Load pre-computed embeddings from disc")
with open(embedding_cache_path, "rb") as fIn:
cache_data = pickle.load(fIn)
passages = cache_data['sentences']
corpus_embeddings = cache_data['embeddings']
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import re
import yake
language = "en"
max_ngram_size = 3
deduplication_threshold = 0.9
deduplication_algo = 'seqm'
windowSize = 3
numOfKeywords = 3
custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None)
# We lower case our text and remove stop-words from indexing
def bm25_tokenizer(text):
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0 and token not in _stop_words.ENGLISH_STOP_WORDS:
tokenized_doc.append(token)
return tokenized_doc
tokenized_corpus = []
for passage in tqdm(passages):
tokenized_corpus.append(bm25_tokenizer(passage))
bm25 = BM25Okapi(tokenized_corpus)
def word_len(s):
return len([i for i in s.split(' ') if i])
# This function will search all wikipedia articles for passages that
# answer the query
def search(query):
print("Input query:", query)
total_qe = []
##### BM25 search (lexical search) #####
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
top_n = np.argpartition(bm25_scores, -5)[-5:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
#print("Top-10 lexical search (BM25) hits")
qe_string = []
for hit in bm25_hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
sub_string = []
for item in qe_string:
for sub_item in item.split(","):
sub_string.append(sub_item)
#print(sub_string)
total_qe.append(sub_string)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-10 hits from bi-encoder
#print("\n-------------------------\n")
#print("Top-N Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
#print(qe_string)
total_qe.append(qe_string)
# Output of top-10 hits from re-ranker
#print("\n-------------------------\n")
#print("Top-N Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
#print(qe_string)
total_qe.append(qe_string)
# Total Results
total_qe.append(qe_string)
st.write("E-Commerce Query Expansion Results: \n")
res = []
for sub_list in total_qe:
for i in sub_list:
rs = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', i)
rs_final = re.sub("\x20\x20", "\n", rs)
#st.write(rs_final.strip())
res.append(rs_final.strip())
#st.write(res[0:maxtags_sidebar])
res_clean = []
for out in res:
if len(out) > 20:
keywords = custom_kw_extractor.extract_keywords(out)
for key in keywords:
res_clean.append(key[0])
else:
res_clean.append(out)
show_out = []
for i in res_clean:
num = word_len(i)
if num > 1:
show_out.append(i)
#st.write(show_out[0:maxtags_sidebar])
for i in show_out[0:maxtags_sidebar]:
st.write(i)
return show_out
def search_nolog(query):
total_qe = []
##### BM25 search (lexical search) #####
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
top_n = np.argpartition(bm25_scores, -5)[-5:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
qe_string = []
for hit in bm25_hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
sub_string = []
for item in qe_string:
for sub_item in item.split(","):
sub_string.append(sub_item)
total_qe.append(sub_string)
##### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
query_embedding = bi_encoder.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-10 hits from bi-encoder
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
total_qe.append(qe_string)
# Output of top-10 hits from re-ranker
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
qe_string = []
for hit in hits[0:1000]:
if passages[hit['corpus_id']].replace("\n", " ") not in qe_string:
qe_string.append(passages[hit['corpus_id']].replace("\n", ""))
total_qe.append(qe_string)
# Total Results
total_qe.append(qe_string)
res = []
for sub_list in total_qe:
for i in sub_list:
rs = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', i)
rs_final = re.sub("\x20\x20", "\n", rs)
res.append(rs_final.strip())
res_clean = []
for out in res:
if len(out) > 20:
keywords = custom_kw_extractor.extract_keywords(out)
for key in keywords:
res_clean.append(key[0])
else:
res_clean.append(out)
show_out = []
for i in res_clean:
num = word_len(i)
if num > 1:
show_out.append(i)
return show_out
def reranking():
rerank_list = []
reres = []
rerank_list = search_nolog(query = user_query)
st.write(rerank_list[0:maxtags_sidebar])
for i in rerank_list[0:maxtags_sidebar]:
reres.append(i)
np.random.seed(7)
np.random.shuffle(reres)
for j in reres:
st.write(j)
st.write("## Results:")
if st.button('Generated Expansion'):
out_res = search(query = user_query)
#st.success(out_res)
if st.button('Rerank'):
out_res = reranking()
#st.success(out_res)