Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,7 @@ def fit_transform(model, docs):
|
|
33 |
topics, probs = model.fit_transform(docs)
|
34 |
return topics, probs
|
35 |
|
36 |
-
|
37 |
|
38 |
#topics_over_times = topic_model.topics_over_time(tiktok, topics, timestamps, nr_bins=20)
|
39 |
#topic_model.visualize_topics_over_time(topics_over_times, top_n_topics=30)
|
@@ -46,35 +46,35 @@ form = st.sidebar.form("Main Settings")
|
|
46 |
|
47 |
form.header("Main Settings")
|
48 |
|
49 |
-
ebay_topic= form.selectbox("eBay Products Topic Selection", ["Motor", "Bicycle", "Beauty", "Basketball", "Fitness"])
|
50 |
-
|
51 |
|
52 |
form.form_submit_button("Run")
|
53 |
|
54 |
if ebay_topic == "Motor":
|
55 |
-
topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
56 |
-
topics, probs = fit_transform(topic_model, tiktok)
|
57 |
-
similar_topics, similarity = topic_model.find_topics("Motor", top_n=
|
58 |
elif ebay_topic == "Bicycle":
|
59 |
-
topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
60 |
-
topics, probs = fit_transform(topic_model, tiktok)
|
61 |
-
similar_topics, similarity = topic_model.find_topics("Bicycle", top_n=
|
62 |
elif ebay_topic == "Beauty":
|
63 |
-
topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
64 |
-
topics, probs = fit_transform(topic_model, tiktok)
|
65 |
-
similar_topics, similarity = topic_model.find_topics("Beauty", top_n=
|
66 |
elif ebay_topic == "Basketball":
|
67 |
-
topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
68 |
-
topics, probs = fit_transform(topic_model, tiktok)
|
69 |
-
similar_topics, similarity = topic_model.find_topics("Basketball", top_n=
|
70 |
elif ebay_topic == "Fitness":
|
71 |
-
topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
72 |
-
topics, probs = fit_transform(topic_model, tiktok)
|
73 |
-
similar_topics, similarity = topic_model.find_topics("Fitness", top_n=
|
74 |
else:
|
75 |
-
topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
76 |
-
topics, probs = fit_transform(topic_model, tiktok)
|
77 |
-
similar_topics, similarity = topic_model.find_topics("Motor", top_n=
|
78 |
|
79 |
if similar_topics != []:
|
80 |
most_similar = similar_topics[0]
|
|
|
33 |
topics, probs = model.fit_transform(docs)
|
34 |
return topics, probs
|
35 |
|
36 |
+
topics, probs = fit_transform(topic_model, tiktok)
|
37 |
|
38 |
#topics_over_times = topic_model.topics_over_time(tiktok, topics, timestamps, nr_bins=20)
|
39 |
#topic_model.visualize_topics_over_time(topics_over_times, top_n_topics=30)
|
|
|
46 |
|
47 |
form.header("Main Settings")
|
48 |
|
49 |
+
ebay_topic = form.selectbox("eBay Products Topic Selection", ["Motor", "Bicycle", "Beauty", "Basketball", "Fitness"])
|
50 |
+
num = form.number_input("What's the max length of the text?", value = 10)
|
51 |
|
52 |
form.form_submit_button("Run")
|
53 |
|
54 |
if ebay_topic == "Motor":
|
55 |
+
#topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
56 |
+
#topics, probs = fit_transform(topic_model, tiktok)
|
57 |
+
similar_topics, similarity = topic_model.find_topics("Motor", top_n=num)
|
58 |
elif ebay_topic == "Bicycle":
|
59 |
+
#topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
60 |
+
#topics, probs = fit_transform(topic_model, tiktok)
|
61 |
+
similar_topics, similarity = topic_model.find_topics("Bicycle", top_n=num)
|
62 |
elif ebay_topic == "Beauty":
|
63 |
+
#topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
64 |
+
#topics, probs = fit_transform(topic_model, tiktok)
|
65 |
+
similar_topics, similarity = topic_model.find_topics("Beauty", top_n=num)
|
66 |
elif ebay_topic == "Basketball":
|
67 |
+
#topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
68 |
+
#topics, probs = fit_transform(topic_model, tiktok)
|
69 |
+
similar_topics, similarity = topic_model.find_topics("Basketball", top_n=num)
|
70 |
elif ebay_topic == "Fitness":
|
71 |
+
#topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
72 |
+
#topics, probs = fit_transform(topic_model, tiktok)
|
73 |
+
similar_topics, similarity = topic_model.find_topics("Fitness", top_n=num)
|
74 |
else:
|
75 |
+
#topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
76 |
+
#topics, probs = fit_transform(topic_model, tiktok)
|
77 |
+
similar_topics, similarity = topic_model.find_topics("Motor", top_n=num)
|
78 |
|
79 |
if similar_topics != []:
|
80 |
most_similar = similar_topics[0]
|