HarryLee commited on
Commit
3bc693d
·
1 Parent(s): 87dfd5a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -21
app.py CHANGED
@@ -33,7 +33,7 @@ def fit_transform(model, docs):
33
  topics, probs = model.fit_transform(docs)
34
  return topics, probs
35
 
36
- #topics, probs = fit_transform(topic_model, tiktok)
37
 
38
  #topics_over_times = topic_model.topics_over_time(tiktok, topics, timestamps, nr_bins=20)
39
  #topic_model.visualize_topics_over_time(topics_over_times, top_n_topics=30)
@@ -46,35 +46,35 @@ form = st.sidebar.form("Main Settings")
46
 
47
  form.header("Main Settings")
48
 
49
- ebay_topic= form.selectbox("eBay Products Topic Selection", ["Motor", "Bicycle", "Beauty", "Basketball", "Fitness"])
50
- top_n = form.number_input("What's the max length of the text?", value = 10)
51
 
52
  form.form_submit_button("Run")
53
 
54
  if ebay_topic == "Motor":
55
- topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
56
- topics, probs = fit_transform(topic_model, tiktok)
57
- similar_topics, similarity = topic_model.find_topics("Motor", top_n=top_n)
58
  elif ebay_topic == "Bicycle":
59
- topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
60
- topics, probs = fit_transform(topic_model, tiktok)
61
- similar_topics, similarity = topic_model.find_topics("Bicycle", top_n=top_n)
62
  elif ebay_topic == "Beauty":
63
- topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
64
- topics, probs = fit_transform(topic_model, tiktok)
65
- similar_topics, similarity = topic_model.find_topics("Beauty", top_n=top_n)
66
  elif ebay_topic == "Basketball":
67
- topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
68
- topics, probs = fit_transform(topic_model, tiktok)
69
- similar_topics, similarity = topic_model.find_topics("Basketball", top_n=top_n)
70
  elif ebay_topic == "Fitness":
71
- topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
72
- topics, probs = fit_transform(topic_model, tiktok)
73
- similar_topics, similarity = topic_model.find_topics("Fitness", top_n=top_n)
74
  else:
75
- topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
76
- topics, probs = fit_transform(topic_model, tiktok)
77
- similar_topics, similarity = topic_model.find_topics("Motor", top_n=top_n)
78
 
79
  if similar_topics != []:
80
  most_similar = similar_topics[0]
 
33
  topics, probs = model.fit_transform(docs)
34
  return topics, probs
35
 
36
+ topics, probs = fit_transform(topic_model, tiktok)
37
 
38
  #topics_over_times = topic_model.topics_over_time(tiktok, topics, timestamps, nr_bins=20)
39
  #topic_model.visualize_topics_over_time(topics_over_times, top_n_topics=30)
 
46
 
47
  form.header("Main Settings")
48
 
49
+ ebay_topic = form.selectbox("eBay Products Topic Selection", ["Motor", "Bicycle", "Beauty", "Basketball", "Fitness"])
50
+ num = form.number_input("What's the max length of the text?", value = 10)
51
 
52
  form.form_submit_button("Run")
53
 
54
  if ebay_topic == "Motor":
55
+ #topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
56
+ #topics, probs = fit_transform(topic_model, tiktok)
57
+ similar_topics, similarity = topic_model.find_topics("Motor", top_n=num)
58
  elif ebay_topic == "Bicycle":
59
+ #topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
60
+ #topics, probs = fit_transform(topic_model, tiktok)
61
+ similar_topics, similarity = topic_model.find_topics("Bicycle", top_n=num)
62
  elif ebay_topic == "Beauty":
63
+ #topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
64
+ #topics, probs = fit_transform(topic_model, tiktok)
65
+ similar_topics, similarity = topic_model.find_topics("Beauty", top_n=num)
66
  elif ebay_topic == "Basketball":
67
+ #topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
68
+ #topics, probs = fit_transform(topic_model, tiktok)
69
+ similar_topics, similarity = topic_model.find_topics("Basketball", top_n=num)
70
  elif ebay_topic == "Fitness":
71
+ #topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
72
+ #topics, probs = fit_transform(topic_model, tiktok)
73
+ similar_topics, similarity = topic_model.find_topics("Fitness", top_n=num)
74
  else:
75
+ #topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
76
+ #topics, probs = fit_transform(topic_model, tiktok)
77
+ similar_topics, similarity = topic_model.find_topics("Motor", top_n=num)
78
 
79
  if similar_topics != []:
80
  most_similar = similar_topics[0]