HarryLee commited on
Commit
c45d768
·
1 Parent(s): 39a2b1e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -7
app.py CHANGED
@@ -13,13 +13,13 @@ st.set_page_config(page_title='eRupt Topic Trendy (e-Commerce x Social Media)',
13
  st.markdown("<h1 style='text-align: center;'>Topic Trendy</h1>", unsafe_allow_html=True)
14
  #BerTopic_model = BERTopic.load("my_topics_model")
15
 
16
- sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
17
- umap_model = UMAP(n_neighbors=15, n_components=2, min_dist=0.1, metric="cosine")
18
- hdbscan_model = HDBSCAN(min_cluster_size=5, min_samples = 3, metric="euclidean", prediction_data=True)
19
- vectorizer_model = CountVectorizer(lowercase = True, ngram_range=(1, 3), analyzer="word", max_df=1.0, min_df=0.5, stop_words="english")
20
 
21
- kw_model = BERTopic(embedding_model=sentence_model, umap_model = umap_model, hdbscan_model = hdbscan_model, vectorizer_model = vectorizer_model, nr_topics = "auto", calculate_probabilities = True)
22
- BerTopic_model = kw_model
23
  input_text = st.text_area("Enter product topic here")
24
 
25
  topic = pd.read_csv('./Data/tiktok_utf8.csv')
@@ -29,7 +29,7 @@ tiktok = topic.text.to_list()
29
 
30
  vectorizer_model = CountVectorizer(stop_words="english")
31
  topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
32
- topics, probs = topic_model.fit_transform(tiktok)
33
 
34
  similar_topics, similarity = topic_model.find_topics(input_text, top_n=20)
35
 
 
13
  st.markdown("<h1 style='text-align: center;'>Topic Trendy</h1>", unsafe_allow_html=True)
14
  #BerTopic_model = BERTopic.load("my_topics_model")
15
 
16
+ #sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
17
+ #umap_model = UMAP(n_neighbors=15, n_components=2, min_dist=0.1, metric="cosine")
18
+ #hdbscan_model = HDBSCAN(min_cluster_size=5, min_samples = 3, metric="euclidean", prediction_data=True)
19
+ #vectorizer_model = CountVectorizer(lowercase = True, ngram_range=(1, 3), analyzer="word", max_df=1.0, min_df=0.5, stop_words="english")
20
 
21
+ #kw_model = BERTopic(embedding_model=sentence_model, umap_model = umap_model, hdbscan_model = hdbscan_model, vectorizer_model = vectorizer_model, nr_topics = "auto", calculate_probabilities = True)
22
+ #BerTopic_model = kw_model
23
  input_text = st.text_area("Enter product topic here")
24
 
25
  topic = pd.read_csv('./Data/tiktok_utf8.csv')
 
29
 
30
  vectorizer_model = CountVectorizer(stop_words="english")
31
  topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
32
+ #topics, probs = topic_model.fit_transform(tiktok)
33
 
34
  similar_topics, similarity = topic_model.find_topics(input_text, top_n=20)
35