Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -13,13 +13,13 @@ st.set_page_config(page_title='eRupt Topic Trendy (e-Commerce x Social Media)',
|
|
13 |
st.markdown("<h1 style='text-align: center;'>Topic Trendy</h1>", unsafe_allow_html=True)
|
14 |
#BerTopic_model = BERTopic.load("my_topics_model")
|
15 |
|
16 |
-
sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
17 |
-
umap_model = UMAP(n_neighbors=15, n_components=2, min_dist=0.1, metric="cosine")
|
18 |
-
hdbscan_model = HDBSCAN(min_cluster_size=5, min_samples = 3, metric="euclidean", prediction_data=True)
|
19 |
-
vectorizer_model = CountVectorizer(lowercase = True, ngram_range=(1, 3), analyzer="word", max_df=1.0, min_df=0.5, stop_words="english")
|
20 |
|
21 |
-
kw_model = BERTopic(embedding_model=sentence_model, umap_model = umap_model, hdbscan_model = hdbscan_model, vectorizer_model = vectorizer_model, nr_topics = "auto", calculate_probabilities = True)
|
22 |
-
BerTopic_model = kw_model
|
23 |
input_text = st.text_area("Enter product topic here")
|
24 |
|
25 |
topic = pd.read_csv('./Data/tiktok_utf8.csv')
|
@@ -29,7 +29,7 @@ tiktok = topic.text.to_list()
|
|
29 |
|
30 |
vectorizer_model = CountVectorizer(stop_words="english")
|
31 |
topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
32 |
-
topics, probs = topic_model.fit_transform(tiktok)
|
33 |
|
34 |
similar_topics, similarity = topic_model.find_topics(input_text, top_n=20)
|
35 |
|
|
|
13 |
st.markdown("<h1 style='text-align: center;'>Topic Trendy</h1>", unsafe_allow_html=True)
|
14 |
#BerTopic_model = BERTopic.load("my_topics_model")
|
15 |
|
16 |
+
#sentence_model = SentenceTransformer("all-MiniLM-L6-v2")
|
17 |
+
#umap_model = UMAP(n_neighbors=15, n_components=2, min_dist=0.1, metric="cosine")
|
18 |
+
#hdbscan_model = HDBSCAN(min_cluster_size=5, min_samples = 3, metric="euclidean", prediction_data=True)
|
19 |
+
#vectorizer_model = CountVectorizer(lowercase = True, ngram_range=(1, 3), analyzer="word", max_df=1.0, min_df=0.5, stop_words="english")
|
20 |
|
21 |
+
#kw_model = BERTopic(embedding_model=sentence_model, umap_model = umap_model, hdbscan_model = hdbscan_model, vectorizer_model = vectorizer_model, nr_topics = "auto", calculate_probabilities = True)
|
22 |
+
#BerTopic_model = kw_model
|
23 |
input_text = st.text_area("Enter product topic here")
|
24 |
|
25 |
topic = pd.read_csv('./Data/tiktok_utf8.csv')
|
|
|
29 |
|
30 |
vectorizer_model = CountVectorizer(stop_words="english")
|
31 |
topic_model = BERTopic(verbose=True,vectorizer_model=vectorizer_model)
|
32 |
+
#topics, probs = topic_model.fit_transform(tiktok)
|
33 |
|
34 |
similar_topics, similarity = topic_model.find_topics(input_text, top_n=20)
|
35 |
|