Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,11 @@
|
|
1 |
-
import streamlit as st
|
2 |
from bertopic import BERTopic
|
3 |
-
import
|
|
|
|
|
4 |
import pandas as pd
|
|
|
|
|
|
|
5 |
from sklearn.feature_extraction.text import CountVectorizer
|
6 |
|
7 |
st.set_page_config(page_title='eRupt Topic Trendy (e-Commerce x Social Media)', page_icon=None, layout='centered', initial_sidebar_state='auto')
|
@@ -79,7 +83,15 @@ def load_model(model_name, hdbscan_model=hdbscan_model, umap_model=umap_model, v
|
|
79 |
else:
|
80 |
kw_model = BERTopic(embedding_model=sentence_model, umap_model = umap_model, hdbscan_model = hdbscan_model, vectorizer_model = vectorizer_model, calculate_probabilities = True)
|
81 |
return kw_model
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
BerTopic_model = load_model(model_name=model_name)
|
84 |
input_text = st.text_area("Enter product topic here")
|
85 |
|
|
|
|
|
1 |
from bertopic import BERTopic
|
2 |
+
import streamlit as st
|
3 |
+
import streamlit.components.v1 as components
|
4 |
+
from datasets import load_dataset
|
5 |
import pandas as pd
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from umap import UMAP
|
8 |
+
from hdbscan import HDBSCAN
|
9 |
from sklearn.feature_extraction.text import CountVectorizer
|
10 |
|
11 |
st.set_page_config(page_title='eRupt Topic Trendy (e-Commerce x Social Media)', page_icon=None, layout='centered', initial_sidebar_state='auto')
|
|
|
83 |
else:
|
84 |
kw_model = BERTopic(embedding_model=sentence_model, umap_model = umap_model, hdbscan_model = hdbscan_model, vectorizer_model = vectorizer_model, calculate_probabilities = True)
|
85 |
return kw_model
|
86 |
+
|
87 |
+
hdbscan_model = HDBSCAN(min_cluster_size=hdbscan_min_cluster_size, min_samples = hdbscan_min_samples, metric=hdbscan_metric, prediction_data=True)
|
88 |
+
if use_random_seed:
|
89 |
+
umap_model = UMAP(n_neighbors=umap_n_neighbors, n_components=umap_n_components, min_dist=umap_min_dist, metric=umap_metric, random_state = 42)
|
90 |
+
else:
|
91 |
+
umap_model = UMAP(n_neighbors=umap_n_neighbors, n_components=umap_n_components, min_dist=umap_min_dist, metric=umap_metric)
|
92 |
+
vectorizer_model = CountVectorizer(lowercase = cv_lowercase, ngram_range=(cv_ngram_min, cv_ngram_max), analyzer=cv_analyzer, max_df=cv_max_df, min_df=cv_min_df, stop_words="english")
|
93 |
+
|
94 |
+
|
95 |
BerTopic_model = load_model(model_name=model_name)
|
96 |
input_text = st.text_area("Enter product topic here")
|
97 |
|