Spaces:
Runtime error
Runtime error
initial commit
Browse files
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.system('cd fairseq;'
|
4 |
+
'pip install --use-feature=in-tree-build ./; cd ..')
|
5 |
+
os.system('ls -l')
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
from fairseq import utils, tasks
|
10 |
+
from fairseq import checkpoint_utils
|
11 |
+
from utils.eval_utils import eval_step
|
12 |
+
from tasks.mm_tasks.caption import CaptionTask
|
13 |
+
from models.ofa import OFAModel
|
14 |
+
from PIL import Image
|
15 |
+
from torchvision import transforms
|
16 |
+
import gradio as gr
|
17 |
+
|
18 |
+
# Register caption task
|
19 |
+
tasks.register_task('caption', CaptionTask)
|
20 |
+
# turn on cuda if GPU is available
|
21 |
+
use_cuda = torch.cuda.is_available()
|
22 |
+
# use fp16 only when GPU is available
|
23 |
+
use_fp16 = False
|
24 |
+
|
25 |
+
os.system('wget https://ofa-silicon.oss-us-west-1.aliyuncs.com/checkpoints/caption_large_best_clean.pt; '
|
26 |
+
'mkdir -p checkpoints; mv caption_large_best_clean.pt checkpoints/caption.pt')
|
27 |
+
|
28 |
+
# Load pretrained ckpt & config
|
29 |
+
overrides = {"bpe_dir": "utils/BPE", "eval_cider": False, "beam": 5,
|
30 |
+
"max_len_b": 16, "no_repeat_ngram_size": 3, "seed": 7}
|
31 |
+
models, cfg, task = checkpoint_utils.load_model_ensemble_and_task(
|
32 |
+
utils.split_paths('checkpoints/caption.pt'),
|
33 |
+
arg_overrides=overrides
|
34 |
+
)
|
35 |
+
|
36 |
+
# Move models to GPU
|
37 |
+
for model in models:
|
38 |
+
model.eval()
|
39 |
+
if use_fp16:
|
40 |
+
model.half()
|
41 |
+
if use_cuda and not cfg.distributed_training.pipeline_model_parallel:
|
42 |
+
model.cuda()
|
43 |
+
model.prepare_for_inference_(cfg)
|
44 |
+
|
45 |
+
# Initialize generator
|
46 |
+
generator = task.build_generator(models, cfg.generation)
|
47 |
+
|
48 |
+
mean = [0.5, 0.5, 0.5]
|
49 |
+
std = [0.5, 0.5, 0.5]
|
50 |
+
|
51 |
+
patch_resize_transform = transforms.Compose([
|
52 |
+
lambda image: image.convert("RGB"),
|
53 |
+
transforms.Resize((cfg.task.patch_image_size, cfg.task.patch_image_size), interpolation=Image.BICUBIC),
|
54 |
+
transforms.ToTensor(),
|
55 |
+
transforms.Normalize(mean=mean, std=std),
|
56 |
+
])
|
57 |
+
|
58 |
+
# Text preprocess
|
59 |
+
bos_item = torch.LongTensor([task.src_dict.bos()])
|
60 |
+
eos_item = torch.LongTensor([task.src_dict.eos()])
|
61 |
+
pad_idx = task.src_dict.pad()
|
62 |
+
|
63 |
+
|
64 |
+
def encode_text(text, length=None, append_bos=False, append_eos=False):
|
65 |
+
s = task.tgt_dict.encode_line(
|
66 |
+
line=task.bpe.encode(text),
|
67 |
+
add_if_not_exist=False,
|
68 |
+
append_eos=False
|
69 |
+
).long()
|
70 |
+
if length is not None:
|
71 |
+
s = s[:length]
|
72 |
+
if append_bos:
|
73 |
+
s = torch.cat([bos_item, s])
|
74 |
+
if append_eos:
|
75 |
+
s = torch.cat([s, eos_item])
|
76 |
+
return s
|
77 |
+
|
78 |
+
|
79 |
+
# Construct input for caption task
|
80 |
+
def construct_sample(image: Image):
|
81 |
+
patch_image = patch_resize_transform(image).unsqueeze(0)
|
82 |
+
patch_mask = torch.tensor([True])
|
83 |
+
src_text = encode_text(" what does the image describe?", append_bos=True, append_eos=True).unsqueeze(0)
|
84 |
+
src_length = torch.LongTensor([s.ne(pad_idx).long().sum() for s in src_text])
|
85 |
+
sample = {
|
86 |
+
"id": np.array(['42']),
|
87 |
+
"net_input": {
|
88 |
+
"src_tokens": src_text,
|
89 |
+
"src_lengths": src_length,
|
90 |
+
"patch_images": patch_image,
|
91 |
+
"patch_masks": patch_mask
|
92 |
+
}
|
93 |
+
}
|
94 |
+
return sample
|
95 |
+
|
96 |
+
|
97 |
+
# Function to turn FP32 to FP16
|
98 |
+
def apply_half(t):
|
99 |
+
if t.dtype is torch.float32:
|
100 |
+
return t.to(dtype=torch.half)
|
101 |
+
return t
|
102 |
+
|
103 |
+
|
104 |
+
# Function for image captioning
|
105 |
+
def image_caption(Image):
|
106 |
+
sample = construct_sample(Image)
|
107 |
+
sample = utils.move_to_cuda(sample) if use_cuda else sample
|
108 |
+
sample = utils.apply_to_sample(apply_half, sample) if use_fp16 else sample
|
109 |
+
with torch.no_grad():
|
110 |
+
result, scores = eval_step(task, generator, models, sample)
|
111 |
+
return result[0]['caption']
|
112 |
+
|
113 |
+
|
114 |
+
title = "eRupt e-Commerce Image Captioning"
|
115 |
+
description = "Online Demo for e-Commerce Image Captioning. Upload your own image or click any one of the examples, and click " \
|
116 |
+
"\"Submit\" and then wait for the generated caption. "
|
117 |
+
#article = "<p style='text-align: center'><a href='https://github.com/OFA-Sys/OFA' target='_blank'>OFA Github " \
|
118 |
+
# "Repo</a></p> "
|
119 |
+
examples = [['0001.jpg'], ['0002.jpg'], ['0003.jpg'], ['0004.jpg'], ['0005.jpg']]
|
120 |
+
io = gr.Interface(fn=image_caption, inputs=gr.inputs.Image(type='pil'), outputs=gr.outputs.Textbox(label="Caption"),
|
121 |
+
title=title, description=description, article=article, examples=examples,
|
122 |
+
allow_flagging=False, allow_screenshot=False)
|
123 |
+
io.launch(cache_examples=True)
|