Spaces:
Runtime error
Runtime error
chore: fix app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
@spaces.GPU
|
8 |
-
def
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
gradio_app = gr.Interface(
|
13 |
-
|
14 |
-
inputs=
|
15 |
-
outputs=
|
16 |
-
title="
|
17 |
-
).launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
import spaces
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
|
7 |
+
|
8 |
+
# @spaces.GPU
|
9 |
+
# def predict(input_img):
|
10 |
+
# predictions = pipeline(input_img)
|
11 |
+
# return input_img, {p["label"]: p["score"] for p in predictions}
|
12 |
+
|
13 |
+
# gradio_app = gr.Interface(
|
14 |
+
# predict,
|
15 |
+
# inputs=gr.Image(label="Select hot dog candidate", sources=['upload', 'webcam'], type="pil"),
|
16 |
+
# outputs=[gr.Image(label="Processed Image"), gr.Label(label="Result", num_top_classes=2)],
|
17 |
+
# title="Hot Dog? Or Not?",
|
18 |
+
# ).launch()
|
19 |
|
20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
21 |
+
import torch
|
22 |
+
device = "cuda" # the device to load the model onto
|
23 |
+
|
24 |
+
model = AutoModelForCausalLM.from_pretrained(
|
25 |
+
"vilm/VinaLlama2-14B",
|
26 |
+
torch_dtype='auto',
|
27 |
+
device_map="auto"
|
28 |
+
)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("vilm/VinaLlama2-14B")
|
30 |
|
31 |
@spaces.GPU
|
32 |
+
def generate_response(input_text):
|
33 |
+
prompt = input_text
|
34 |
+
messages = [
|
35 |
+
{"role": "system", "content": "BαΊ‘n lΓ trợ lΓ AI hα»―u Γch."},
|
36 |
+
{"role": "user", "content": prompt}
|
37 |
+
]
|
38 |
+
text = tokenizer.apply_chat_template(
|
39 |
+
messages,
|
40 |
+
tokenize=False,
|
41 |
+
add_generation_prompt=True
|
42 |
+
)
|
43 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
44 |
+
|
45 |
+
generated_ids = model.generate(
|
46 |
+
model_inputs.input_ids,
|
47 |
+
max_new_tokens=1024,
|
48 |
+
eos_token_id=tokenizer.eos_token_id,
|
49 |
+
temperature=0.25,
|
50 |
+
)
|
51 |
+
generated_ids = [
|
52 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
53 |
+
]
|
54 |
+
|
55 |
+
response = tokenizer.batch_decode(generated_ids)[0]
|
56 |
+
return response
|
57 |
|
58 |
gradio_app = gr.Interface(
|
59 |
+
generate_response,
|
60 |
+
inputs="text",
|
61 |
+
outputs="text",
|
62 |
+
title="AI Chatbot",
|
63 |
+
).launch()
|