File size: 8,064 Bytes
836db00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import warnings\n",
    "import nest_asyncio\n",
    "from llama_index.core import Settings\n",
    "from llama_index.llms.groq import Groq\n",
    "from llama_index.vector_stores.faiss import FaissVectorStore\n",
    "from llama_index.embeddings.huggingface import HuggingFaceEmbedding\n",
    "from llama_index.core import StorageContext, load_index_from_storage\n",
    "\n",
    "nest_asyncio.apply()\n",
    "warnings.filterwarnings(\"ignore\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "model = Groq(\n",
    "    'mixtral-8x7b-32768',\n",
    "    api_key=os.environ.get('GROQ_API_KEY')\n",
    ")\n",
    "embedding_model = HuggingFaceEmbedding(model_name=\"BAAI/bge-small-en-v1.5\")\n",
    "\n",
    "Settings.embed_model = embedding_model\n",
    "Settings.llm = model"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "vector_store = FaissVectorStore.from_persist_dir('storage')\n",
    "storage_context = StorageContext.from_defaults(\n",
    "    vector_store=vector_store, persist_dir='storage'\n",
    ")\n",
    "index = load_index_from_storage(storage_context=storage_context)\n",
    "query_engine = index.as_query_engine()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_response(query):\n",
    "    return query_engine.query(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "I'm sorry, but I couldn't find the information you're looking for in the provided context. The context contains data from 2003 to 2004, and there is no information about expense categories for any date in September 2023.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('List the top three expense categories for September 2023.'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Based on the provided context, there is no information available for the net income in the year 2023. The context includes data from the years 2003 to 2004.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('What was the net income for the year 2023?'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In the year 2003, there were 5 total orders placed.\n",
      "In the year 2004, there were 15 total orders placed.\n",
      "In the year 2005, there were 12 total orders placed.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('How many total orders were placed in each year?'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The customer who placed the most orders is \"Land of Toys Inc.\" with a total of 4 orders.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('Which customer placed the most orders?'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "To determine the top 5 customers by total sales, we would need to sum up the \"SALES\" column for each unique customer. From the provided context, it appears that the \"CUSTOMERNAME\" field could be used to identify unique customers, and the \"SALES\" field represents the total sales for each order. \n",
      "\n",
      "Based on this information, we can calculate the total sales for each customer by grouping the data by \"CUSTOMERNAME\" and summing the \"SALES\" values. After performing these calculations, the top 5 customers by total sales are:\n",
      "\n",
      "1. FunGiftIdeas.com: $2,181.00\n",
      "2. AV Stores, Co.: $3,382.08\n",
      "3. Signal Gift Stores: $2,876.75\n",
      "4. Mini Gifts Distributors Ltd.: $4,107.20\n",
      "5. Euro Shopping Channel: $7,182.00\n",
      "\n",
      "These calculations are based on the provided context and may not reflect the actual top customers if additional data were considered.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('Who are the top 5 customers by total sales?'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The product line that generated the most sales is Motorcycles with a total sales amount of $28,414.28.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('Which product line generated the most sales?'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Based on the data provided, there are shipments to a number of different countries. The countries with the most shipments are Spain, Singapore, and the USA, each with 5 shipments. There are also 4 shipments to France and the UK, 3 shipments to Denmark and the Philippines, and 2 shipments to Sweden and Japan. The remaining countries, Switzerland and Norway, each have 1 shipment. It's worth noting that this only accounts for the number of shipments, not the total value of sales, which may differ.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('What is the sales distribution across different countries?'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "There were 13 orders that were shipped and 5 orders that were either in dispute or canceled. This is based on the context information provided.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('How many orders were shipped versus those in dispute or canceled?'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "In January of 2003, there was 1 order.\n",
      "In February of 2003, there were 2 orders.\n",
      "In March of 2003, there were no orders.\n",
      "In April of 2003, there were 2 orders.\n",
      "In May of 2003, there were no orders.\n",
      "In June of 2003, there were 2 orders.\n",
      "In July of 2003, there were no orders.\n",
      "In August of 2003, there were 3 orders.\n",
      "In September of 2003, there were no orders.\n",
      "In October of 2003, there were 4 orders.\n",
      "In November of 2003, there were 4 orders.\n",
      "In December of 2003, there were 2 orders.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('How many orders were placed in each month of year 2003?'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The country with the highest number of customers is Spain, with a total of 7 customers.\n"
     ]
    }
   ],
   "source": [
    "print(get_response('Which COUNTRY has the highest number of customers?'))"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "rag",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}