import os import warnings import nest_asyncio import streamlit as st from dotenv import load_dotenv from DataLoading.Data import get_data from llama_index.core import Settings from llama_index.llms.groq import Groq from llama_index.vector_stores.faiss import FaissVectorStore from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import StorageContext, load_index_from_storage nest_asyncio.apply() load_dotenv() warnings.filterwarnings("ignore") def init_llm(model_name): return Groq(model=model_name, api_key=os.getenv("GROQ_API_KEY")) @st.cache_resource def load_index(selected_model): curr_direc = os.getcwd() file_path = os.path.join(curr_direc, 'processed_data.csv') # print(file_path) get_data(file_path) model = init_llm(selected_model) embedding_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") Settings.embed_model = embedding_model Settings.llm = model vector_store = FaissVectorStore.from_persist_dir('storage') storage_context = StorageContext.from_defaults( vector_store=vector_store, persist_dir='storage' ) index = load_index_from_storage(storage_context=storage_context) return index.as_query_engine() st.title("Chatbot from ClienterAI") st.sidebar.header("Settings") selected_model = st.sidebar.selectbox( "Select Groq Model:", options=["mixtral-8x7b-32768", "gemma2-9b-it", "llama-3.1-70b-versatile", "llama3-8b-8192", "llava-v1.5-7b-4096-preview"], index=0 ) query_engine = load_index(selected_model) if "messages" not in st.session_state: st.session_state["messages"] = [] with st.form("chat_form", clear_on_submit=True): user_input = st.text_input("Ask a question based on your data:", "") submitted = st.form_submit_button("Send") if submitted and user_input: st.session_state["messages"].append({"role": "user", "content": user_input}) response = query_engine.query(user_input) ai_response = response st.session_state["messages"].append({"role": "assistant", "content": ai_response}) for message in st.session_state["messages"]: if message["role"] == "user": st.markdown(f"**You:** {message['content']}") else: st.markdown(f"**Assistant:** {message['content']}") if st.sidebar.button("Clear Chat"): st.session_state["messages"] = [] st.sidebar.success("Chat cleared!")