File size: 8,533 Bytes
17a7095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import pandas as pd
import gym
from gym.spaces import Box
from collections.abc import Iterable

from datetime import datetime, timedelta
import pickle

def my_predict(t, profet_path):
    date = str(datetime.today()+timedelta(days=int(t)))[:11]

    with open(profet_path, 'rb') as f:
        m = pickle.load(f)
        future_dates = pd.DataFrame({'ds': [date]})
        forecast = m.predict(future_dates)
        return forecast['yhat'][0]/100


def predict_regression(model_path, data):
    with open(model_path, 'rb') as f:
        model = pickle.load(f)

    prediction = model.predict(data)[0]

    return prediction


class GeneralizedRLEnvironment(gym.Env):
    def __init__(self, input_data):
        self.my_data = {}
        self.input_data = input_data
        self.T = 100
        self.episode = 1
        self.t = 0
        self.done = False
        self.action_space_range = [-1, 1]

        observations_low = []
        observation_high = []
        for variable in self.input_data['state']['observable_factors']:
            observations_low.append(
                eval(str(self.input_data['actions']['RL_boundaries'][variable['name']][0])))
            observation_high.append(
                eval(str(self.input_data['actions']['RL_boundaries'][variable['name']][1])))

        for model_predictions in self.input_data['state']['model_predictions']:
            for _ in range(model_predictions['number_of_values_to_derive']):
                observations_low.append(eval(
                    str(self.input_data['actions']['RL_boundaries'][model_predictions['name']][0])))
                observation_high.append(eval(
                    str(self.input_data['actions']['RL_boundaries'][model_predictions['name']][1])))

        actions_low = []
        actions_high = []

        for action in self.input_data['actions']['action_space']:
            if action['type'] in ['int', 'double', 'float']:
                actions_low.append(-1)
                actions_high.append(1)

            if action['type'] in ['list']:
                actions_low.append(0)
                actions_high.append(len(action['list']))

        self.observation_space = Box(low=np.array(
            observations_low), high=np.array(observation_high))
        self.action_space = Box(low=np.array(
            actions_low), high=np.array(actions_high))
        self.reset()

    def formate_string(self, my_str):
        op_list = my_str.split("{")
        final = []

        for op in op_list:
            if "}" in op:
                if len(op.split("}")[0].split("[")) > 1:
                    final.append("self.my_data["+"'"+op.split("}")[0].split(
                        "[")[0]+"']" + op[op.find('['): op.rfind(']')+1] + op.split("}")[1])
                else:
                    final.append(
                        "self.my_data["+"'"+op.split("}")[0]+"'" + "]"+op.split("}")[1])
            else:
                final.append(op)

        return "".join(final)

    def step(self, action):
        """
        Execute an action in the environment and return the next state, reward, and done flag.
        """
        self.my_data['actions'] = action
        self.my_data['reward'] = 0
        for indx, action_var in enumerate(self.input_data['actions']['action_space']):
            if action_var['type'] in ['int', 'double', 'float']:
                scalled_action = ((action[indx] - self.action_space_range[0])/(self.action_space_range[1] - self.action_space_range[0]))*(self.input_data['actions']['RL_boundaries']
                                                                                                                                          [action_var['name']][1] - self.input_data['actions']['RL_boundaries'][action_var['name']][0]) + self.input_data['actions']['RL_boundaries'][action_var['name']][0]
                self.my_data[action_var['name']] = scalled_action
            if action_var['type'] in ['list']:
                self.my_data[action_var['name']] = action_var['list'][int(
                    np.floor(action[indx] - 0.000000001))]

        for calc in self.input_data['environment']['step']:
            exec(self.formate_string(calc))

        for calc in self.input_data['environment']['reward']:
            exec(self.formate_string(calc))

        self.t += 1
        if self.t == self.T-1:
            self.episode += 1
            self.done = True
        global df2

        next_state = self.get_next_step()

        return next_state, self.my_data['reward'], self.done, {"scalled_action": scalled_action}

    def reset(self):
        """
        Reset the environment to its initial state.
        """
        self.t = 0
        self.done = False
        observations = self.observation_space.sample()

        index = 0
        for variable in self.input_data['state']['observable_factors']:
            if 'starting_value' in variable:
                observations[index] = variable['starting_value']
            self.my_data[variable['name']] = observations[index]
            index += 1

        for variable in self.input_data['state']['model_predictions']:
            if variable['number_of_values_to_derive'] > 1:
                my_list = []
                for _ in range(variable['number_of_values_to_derive']):
                    my_list.append(observations[index])
                    index += 1
                self.my_data[variable['name']] = my_list

            elif variable['number_of_values_to_derive'] == 1:
                self.my_data[variable['name']] = observations[index]

        if self.input_data['state']['constant_factors'] != None:
            for key in self.input_data['state']['constant_factors'].keys():
                self.my_data[key] = self.input_data['state']['constant_factors'][key]

        return observations

    def get_next_step(self):
        observations = []
        for variable in self.input_data['state']['observable_factors']:
            observations.append(self.my_data[variable['name']])

        for variable in self.input_data['state']['model_predictions']:
            if variable['number_of_values_to_derive'] > 1:
                if variable['model_type'] == 'time_series':
                    self.my_data[variable['name']] = [my_predict(
                        i+self.t, variable['model_path']) for i in range(variable['number_of_values_to_derive'])]
                    observations = np.hstack(
                        (np.array(observations), np.array(self.my_data[variable['name']])))

                elif variable['model_type'] == 'regression':
                    for i in range(variable['number_of_values_to_derive']):
                        input_data = []
                        for input in variable['input_variables']:
                            if isinstance(self.my_data[input], Iterable):
                                input_data.append(self.my_data[input][0])
                            else:
                                input_data.append(self.my_data[input])
                        self.my_data[variable['name']] = predict_regression(
                            variable['model_path'], [input_data])
                        observations = np.append(observations, predict_regression(
                            variable['model_path'], [input_data]))

            elif variable['number_of_values_to_derive'] == 1:
                if variable['model_type'] == 'time_series':
                    self.my_data[variable['name']] = my_predict(
                        i+self.t, variable['model_path'])
                    observations = np.hstack(
                        (np.array(observations), np.array(self.my_data[variable['name']])))

                elif variable['model_type'] == 'regression':
                    for i in range(variable['number_of_values_to_derive']):
                        input_data = []
                        for input in variable['input_variables']:
                            if isinstance(self.my_data[input], Iterable):
                                input_data.append(self.my_data[input][0])
                            else:
                                input_data.append(self.my_data[input])
                        self.my_data[variable['name']] = predict_regression(
                            variable['model_path'], [input_data])
                        observations = np.append(observations, predict_regression(
                            variable['model_path'], [input_data]))

        return observations