Spaces:
Sleeping
Sleeping
import gradio as gr | |
import cv2 | |
import requests | |
import os | |
from ultralytics import YOLO | |
# Define the colors for different classes | |
colors = { | |
0: (255, 0, 0), # Red for class 0 | |
1: (0, 128, 0), # Green (dark) for class 1 | |
2: (0, 0, 255), # Blue for class 2 | |
3: (255, 255, 0), # Yellow for class 3 | |
4: (255, 0, 255), # Magenta for class 4 | |
5: (0, 255, 255), # Cyan for class 5 | |
6: (128, 0, 0), # Maroon for class 6 | |
7: (0, 225, 0), # Green for class 7 | |
} | |
# Load the YOLO model | |
model = YOLO('modelbest.pt') | |
def show_preds_image(image_path): | |
image = cv2.imread(image_path) | |
outputs = model.predict(source=image_path) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
class_id = int(results.boxes.cls[i]) | |
label = model.names[class_id] | |
# Get the bounding box coordinates | |
x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3]) | |
# Draw the bounding box with the specified color | |
color = colors.get(class_id, (0, 0, 255)) | |
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2, cv2.LINE_AA) | |
# Calculate text size and position | |
label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2) | |
text_x = x1 + (x2 - x1) // 2 - label_size[0] // 2 | |
text_y = y1 + (y2 - y1) // 2 + label_size[1] // 2 | |
# Draw the label text | |
cv2.putText(image, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2, cv2.LINE_AA) | |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
inputs_image = gr.Image(type="filepath", label="Input Image") | |
outputs_image = gr.Image(type="numpy", label="Output Image") | |
interface_image = gr.Interface( | |
fn=show_preds_image, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Smoke Detection on Indian Roads" | |
) | |
def show_preds_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (width, height)) | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_copy = frame.copy() | |
outputs = model.predict(source=frame) | |
results = outputs[0].cpu().numpy() | |
for i, det in enumerate(results.boxes.xyxy): | |
class_id = int(results.boxes.cls[i]) | |
label = model.names[class_id] | |
x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3]) | |
color = colors.get(class_id, (0, 0, 255)) | |
cv2.rectangle(frame_copy, (x1, y1), (x2, y2), color, 2, cv2.LINE_AA) | |
label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2) | |
text_x = x1 + (x2 - x1) // 2 - label_size[0] // 2 | |
text_y = y1 + (y2 - y1) // 2 + label_size[1] // 2 | |
cv2.putText(frame_copy, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2, cv2.LINE_AA) | |
out.write(frame_copy) | |
cap.release() | |
out.release() | |
return 'output_video.mp4' | |
inputs_video = gr.Video(format="mp4", label="Input Video") | |
outputs_video = gr.Video(label="Output Video") | |
interface_video = gr.Interface( | |
fn=show_preds_video, | |
inputs=inputs_video, | |
outputs=outputs_video, | |
title="Smoke Detection on Indian Roads" | |
) | |
gr.TabbedInterface( | |
[interface_image, interface_video], | |
tab_names=['Image inference', 'Video inference'] | |
).queue().launch() | |