Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,32 +2,24 @@ import gradio as gr
|
|
2 |
import cv2
|
3 |
import requests
|
4 |
import os
|
5 |
-
|
6 |
from ultralytics import YOLO
|
|
|
7 |
file_urls = [
|
8 |
-
'https://www.dropbox.com/
|
9 |
-
'https://www.dropbox.com/
|
10 |
-
'https://www.dropbox.com/
|
11 |
]
|
12 |
|
13 |
-
|
14 |
def download_file(url, save_name):
|
15 |
-
url = url
|
16 |
if not os.path.exists(save_name):
|
17 |
file = requests.get(url)
|
18 |
open(save_name, 'wb').write(file.content)
|
19 |
-
|
20 |
for i, url in enumerate(file_urls):
|
21 |
if 'mp4' in file_urls[i]:
|
22 |
-
download_file(
|
23 |
-
file_urls[i],
|
24 |
-
f"video.mp4"
|
25 |
-
)
|
26 |
else:
|
27 |
-
download_file(
|
28 |
-
file_urls[i],
|
29 |
-
f"image_{i}.jpg"
|
30 |
-
)
|
31 |
|
32 |
model = YOLO('modelbest.pt')
|
33 |
path = [['image_0.jpg'], ['image_1.jpg']]
|
@@ -47,12 +39,12 @@ def show_preds_image(image_path):
|
|
47 |
lineType=cv2.LINE_AA
|
48 |
)
|
49 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
50 |
-
|
51 |
inputs_image = [
|
52 |
-
gr.
|
53 |
]
|
54 |
outputs_image = [
|
55 |
-
gr.
|
56 |
]
|
57 |
|
58 |
interface_image = gr.Interface(
|
@@ -64,10 +56,9 @@ interface_image = gr.Interface(
|
|
64 |
cache_examples=False,
|
65 |
)
|
66 |
|
67 |
-
|
68 |
def show_preds_video(video_path):
|
69 |
cap = cv2.VideoCapture(video_path)
|
70 |
-
while
|
71 |
ret, frame = cap.read()
|
72 |
if ret:
|
73 |
frame_copy = frame.copy()
|
@@ -83,13 +74,12 @@ def show_preds_video(video_path):
|
|
83 |
lineType=cv2.LINE_AA
|
84 |
)
|
85 |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
86 |
-
|
87 |
inputs_video = [
|
88 |
-
gr.
|
89 |
-
|
90 |
]
|
91 |
outputs_video = [
|
92 |
-
gr.
|
93 |
]
|
94 |
interface_video = gr.Interface(
|
95 |
fn=show_preds_video,
|
@@ -103,4 +93,111 @@ interface_video = gr.Interface(
|
|
103 |
gr.TabbedInterface(
|
104 |
[interface_image, interface_video],
|
105 |
tab_names=['Image inference', 'Video inference']
|
106 |
-
).queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import cv2
|
3 |
import requests
|
4 |
import os
|
|
|
5 |
from ultralytics import YOLO
|
6 |
+
|
7 |
file_urls = [
|
8 |
+
# 'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1',
|
9 |
+
# 'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1',
|
10 |
+
# 'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1'
|
11 |
]
|
12 |
|
|
|
13 |
def download_file(url, save_name):
|
|
|
14 |
if not os.path.exists(save_name):
|
15 |
file = requests.get(url)
|
16 |
open(save_name, 'wb').write(file.content)
|
17 |
+
|
18 |
for i, url in enumerate(file_urls):
|
19 |
if 'mp4' in file_urls[i]:
|
20 |
+
download_file(file_urls[i], f"video.mp4")
|
|
|
|
|
|
|
21 |
else:
|
22 |
+
download_file(file_urls[i], f"image_{i}.jpg")
|
|
|
|
|
|
|
23 |
|
24 |
model = YOLO('modelbest.pt')
|
25 |
path = [['image_0.jpg'], ['image_1.jpg']]
|
|
|
39 |
lineType=cv2.LINE_AA
|
40 |
)
|
41 |
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
42 |
+
|
43 |
inputs_image = [
|
44 |
+
gr.Image(type="filepath", label="Input Image"),
|
45 |
]
|
46 |
outputs_image = [
|
47 |
+
gr.Image(type="numpy", label="Output Image"),
|
48 |
]
|
49 |
|
50 |
interface_image = gr.Interface(
|
|
|
56 |
cache_examples=False,
|
57 |
)
|
58 |
|
|
|
59 |
def show_preds_video(video_path):
|
60 |
cap = cv2.VideoCapture(video_path)
|
61 |
+
while cap.isOpened():
|
62 |
ret, frame = cap.read()
|
63 |
if ret:
|
64 |
frame_copy = frame.copy()
|
|
|
74 |
lineType=cv2.LINE_AA
|
75 |
)
|
76 |
yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
77 |
+
|
78 |
inputs_video = [
|
79 |
+
gr.Video(format="mp4", label="Input Video"),
|
|
|
80 |
]
|
81 |
outputs_video = [
|
82 |
+
gr.Image(type="numpy", label="Output Image"),
|
83 |
]
|
84 |
interface_video = gr.Interface(
|
85 |
fn=show_preds_video,
|
|
|
93 |
gr.TabbedInterface(
|
94 |
[interface_image, interface_video],
|
95 |
tab_names=['Image inference', 'Video inference']
|
96 |
+
).queue().launch()
|
97 |
+
|
98 |
+
# import gradio as gr
|
99 |
+
# import cv2
|
100 |
+
# import requests
|
101 |
+
# import os
|
102 |
+
|
103 |
+
# from ultralytics import YOLO
|
104 |
+
# file_urls = [
|
105 |
+
# 'https://www.dropbox.com/scl/fi/kqd1z6wby1212c6ndodb3/Pol_20_jpg.rf.133c835b66958a7d48c12deeda31a719.jpg?rlkey=uqgvs2cwvahnmju15fv1zgorg&st=snv2yvtk&dl=0',
|
106 |
+
# 'https://www.dropbox.com/scl/fi/39aakapeh2y5ztk94rsyu/11e-a347-3f2d_jpg.rf.c66e5aeb57ee2ed660fdf0162156127d.jpg?rlkey=xoi3iw45vksgiejycau2ha7fh&st=etiawigv&dl=0',
|
107 |
+
# 'https://www.dropbox.com/scl/fi/8f08ehy53vsemw164g8n7/Recording2024-06-26184319.mp4?rlkey=pnmov906ttodl0cm92rpvc5ta&st=2twc9pjn&dl=0'
|
108 |
+
# ]
|
109 |
+
|
110 |
+
|
111 |
+
# def download_file(url, save_name):
|
112 |
+
# url = url
|
113 |
+
# if not os.path.exists(save_name):
|
114 |
+
# file = requests.get(url)
|
115 |
+
# open(save_name, 'wb').write(file.content)
|
116 |
+
|
117 |
+
# for i, url in enumerate(file_urls):
|
118 |
+
# if 'mp4' in file_urls[i]:
|
119 |
+
# download_file(
|
120 |
+
# file_urls[i],
|
121 |
+
# f"video.mp4"
|
122 |
+
# )
|
123 |
+
# else:
|
124 |
+
# download_file(
|
125 |
+
# file_urls[i],
|
126 |
+
# f"image_{i}.jpg"
|
127 |
+
# )
|
128 |
+
|
129 |
+
# model = YOLO('modelbest.pt')
|
130 |
+
# path = [['image_0.jpg'], ['image_1.jpg']]
|
131 |
+
# video_path = [['video.mp4']]
|
132 |
+
|
133 |
+
# def show_preds_image(image_path):
|
134 |
+
# image = cv2.imread(image_path)
|
135 |
+
# outputs = model.predict(source=image_path)
|
136 |
+
# results = outputs[0].cpu().numpy()
|
137 |
+
# for i, det in enumerate(results.boxes.xyxy):
|
138 |
+
# cv2.rectangle(
|
139 |
+
# image,
|
140 |
+
# (int(det[0]), int(det[1])),
|
141 |
+
# (int(det[2]), int(det[3])),
|
142 |
+
# color=(0, 0, 255),
|
143 |
+
# thickness=2,
|
144 |
+
# lineType=cv2.LINE_AA
|
145 |
+
# )
|
146 |
+
# return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
147 |
+
|
148 |
+
# inputs_image = [
|
149 |
+
# gr.components.Image(type="filepath", label="Input Image"),
|
150 |
+
# ]
|
151 |
+
# outputs_image = [
|
152 |
+
# gr.components.Image(type="numpy", label="Output Image"),
|
153 |
+
# ]
|
154 |
+
|
155 |
+
# interface_image = gr.Interface(
|
156 |
+
# fn=show_preds_image,
|
157 |
+
# inputs=inputs_image,
|
158 |
+
# outputs=outputs_image,
|
159 |
+
# title="Pothole detector",
|
160 |
+
# examples=path,
|
161 |
+
# cache_examples=False,
|
162 |
+
# )
|
163 |
+
|
164 |
+
|
165 |
+
# def show_preds_video(video_path):
|
166 |
+
# cap = cv2.VideoCapture(video_path)
|
167 |
+
# while(cap.isOpened()):
|
168 |
+
# ret, frame = cap.read()
|
169 |
+
# if ret:
|
170 |
+
# frame_copy = frame.copy()
|
171 |
+
# outputs = model.predict(source=frame)
|
172 |
+
# results = outputs[0].cpu().numpy()
|
173 |
+
# for i, det in enumerate(results.boxes.xyxy):
|
174 |
+
# cv2.rectangle(
|
175 |
+
# frame_copy,
|
176 |
+
# (int(det[0]), int(det[1])),
|
177 |
+
# (int(det[2]), int(det[3])),
|
178 |
+
# color=(0, 0, 255),
|
179 |
+
# thickness=2,
|
180 |
+
# lineType=cv2.LINE_AA
|
181 |
+
# )
|
182 |
+
# yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
183 |
+
|
184 |
+
# inputs_video = [
|
185 |
+
# gr.components.Video(type="filepath", label="Input Video"),
|
186 |
+
|
187 |
+
# ]
|
188 |
+
# outputs_video = [
|
189 |
+
# gr.components.Image(type="numpy", label="Output Image"),
|
190 |
+
# ]
|
191 |
+
# interface_video = gr.Interface(
|
192 |
+
# fn=show_preds_video,
|
193 |
+
# inputs=inputs_video,
|
194 |
+
# outputs=outputs_video,
|
195 |
+
# title="Pothole detector",
|
196 |
+
# examples=video_path,
|
197 |
+
# cache_examples=False,
|
198 |
+
# )
|
199 |
+
|
200 |
+
# gr.TabbedInterface(
|
201 |
+
# [interface_image, interface_video],
|
202 |
+
# tab_names=['Image inference', 'Video inference']
|
203 |
+
# ).queue().launch()
|