Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import requests
|
|
4 |
import os
|
5 |
from ultralytics import YOLO
|
6 |
|
|
|
7 |
file_urls = [
|
8 |
'https://www.dropbox.com/scl/fi/kqd1z6wby1212c6ndodb3/Pol_20_jpg.rf.133c835b66958a7d48c12deeda31a719.jpg?rlkey=uqgvs2cwvahnmju15fv1zgorg&st=snv2yvtk&dl=0',
|
9 |
'https://www.dropbox.com/scl/fi/39aakapeh2y5ztk94rsyu/11e-a347-3f2d_jpg.rf.c66e5aeb57ee2ed660fdf0162156127d.jpg?rlkey=xoi3iw45vksgiejycau2ha7fh&st=etiawigv&dl=0',
|
@@ -21,6 +22,7 @@ for i, url in enumerate(file_urls):
|
|
21 |
else:
|
22 |
download_file(url, f"image_{i}.jpg")
|
23 |
|
|
|
24 |
colors = {
|
25 |
0: (255, 0, 0), # Red for class 0
|
26 |
1: (0, 128, 0), # Green (dark) for class 1
|
@@ -32,9 +34,8 @@ colors = {
|
|
32 |
7: (0, 225, 0), # Green for class 7
|
33 |
}
|
34 |
|
|
|
35 |
model = YOLO('modelbest.pt')
|
36 |
-
image_paths = [['image_0.jpg'], ['image_1.jpg']]
|
37 |
-
video_paths = [['video.mp4']]
|
38 |
|
39 |
def show_preds_image(image_path):
|
40 |
image = cv2.imread(image_path)
|
@@ -69,9 +70,7 @@ interface_image = gr.Interface(
|
|
69 |
fn=show_preds_image,
|
70 |
inputs=inputs_image,
|
71 |
outputs=outputs_image,
|
72 |
-
title="Smoke Detection on Indian Roads"
|
73 |
-
examples=image_paths,
|
74 |
-
cache_examples=False,
|
75 |
)
|
76 |
|
77 |
def show_preds_video(video_path):
|
@@ -122,287 +121,10 @@ interface_video = gr.Interface(
|
|
122 |
fn=show_preds_video,
|
123 |
inputs=inputs_video,
|
124 |
outputs=outputs_video,
|
125 |
-
title="Smoke Detection on Indian Roads"
|
126 |
-
examples=video_paths,
|
127 |
-
cache_examples=False,
|
128 |
)
|
129 |
|
130 |
gr.TabbedInterface(
|
131 |
[interface_image, interface_video],
|
132 |
tab_names=['Image inference', 'Video inference']
|
133 |
).queue().launch()
|
134 |
-
|
135 |
-
|
136 |
-
# import gradio as gr
|
137 |
-
# import cv2
|
138 |
-
# import requests
|
139 |
-
# import os
|
140 |
-
# from ultralytics import YOLO
|
141 |
-
|
142 |
-
# file_urls = [
|
143 |
-
# 'https://www.dropbox.com/scl/fi/kqd1z6wby1212c6ndodb3/Pol_20_jpg.rf.133c835b66958a7d48c12deeda31a719.jpg?rlkey=uqgvs2cwvahnmju15fv1zgorg&st=snv2yvtk&dl=0',
|
144 |
-
# 'https://www.dropbox.com/scl/fi/39aakapeh2y5ztk94rsyu/11e-a347-3f2d_jpg.rf.c66e5aeb57ee2ed660fdf0162156127d.jpg?rlkey=xoi3iw45vksgiejycau2ha7fh&st=etiawigv&dl=0',
|
145 |
-
# 'https://www.dropbox.com/scl/fi/8f08ehy53vsemw164g8n7/Recording2024-06-26184319.mp4?rlkey=pnmov906ttodl0cm92rpvc5ta&st=2twc9pjn&dl=0'
|
146 |
-
# ]
|
147 |
-
|
148 |
-
# def download_file(url, save_name):
|
149 |
-
# if not os.path.exists(save_name):
|
150 |
-
# file = requests.get(url)
|
151 |
-
# open(save_name, 'wb').write(file.content)
|
152 |
-
|
153 |
-
# for i, url in enumerate(file_urls):
|
154 |
-
# if 'mp4' in file_urls[i]:
|
155 |
-
# download_file(file_urls[i], f"video.mp4")
|
156 |
-
# else:
|
157 |
-
# download_file(file_urls[i], f"image_{i}.jpg")
|
158 |
-
|
159 |
-
# colors = {
|
160 |
-
# 0: (255, 0, 0), # Red for class 0
|
161 |
-
# 1: (0, 128, 0), # Green (dark) for class 1
|
162 |
-
# 2: (0, 0, 255), # Blue for class 2
|
163 |
-
# 3: (255, 255, 0), # Yellow for class 3
|
164 |
-
# 4: (255, 0, 255), # Magenta for class 4
|
165 |
-
# 5: (0, 255, 255), # Cyan for class 5
|
166 |
-
# 6: (128, 0, 0), # Maroon for class 6
|
167 |
-
# 7: (0, 225, 0), # Green for class 7
|
168 |
-
# }
|
169 |
-
|
170 |
-
# model = YOLO('modelbest.pt')
|
171 |
-
# path = [['image_0.jpg'], ['image_1.jpg']]
|
172 |
-
# video_path = [['video.mp4']]
|
173 |
-
|
174 |
-
# def show_preds_image(image_path):
|
175 |
-
# image = cv2.imread(image_path)
|
176 |
-
# outputs = model.predict(source=image_path)
|
177 |
-
# results = outputs[0].cpu().numpy()
|
178 |
-
|
179 |
-
# for i, det in enumerate(results.boxes.xyxy):
|
180 |
-
# class_id = int(results.boxes.cls[i])
|
181 |
-
# label = model.names[class_id]
|
182 |
-
|
183 |
-
# # Get the bounding box coordinates
|
184 |
-
# x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3])
|
185 |
-
|
186 |
-
# # Draw the bounding box with the specified color
|
187 |
-
# color = colors.get(class_id, (0, 0, 255))
|
188 |
-
# cv2.rectangle(image, (x1, y1), (x2, y2), color, 2, cv2.LINE_AA)
|
189 |
-
|
190 |
-
# # Calculate text size and position
|
191 |
-
# label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2)
|
192 |
-
# text_x = x1 + (x2 - x1) // 2 - label_size[0] // 2
|
193 |
-
# text_y = y1 + (y2 - y1) // 2 + label_size[1] // 2
|
194 |
-
|
195 |
-
# # Draw the label text
|
196 |
-
# cv2.putText(image, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2, cv2.LINE_AA)
|
197 |
-
|
198 |
-
# return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
199 |
-
|
200 |
-
|
201 |
-
# # def show_preds_image(image_path):
|
202 |
-
# # image = cv2.imread(image_path)
|
203 |
-
# # outputs = model.predict(source=image_path)
|
204 |
-
# # results = outputs[0].cpu().numpy()
|
205 |
-
# # for i, det in enumerate(results.boxes.xyxy):
|
206 |
-
# # cv2.rectangle(
|
207 |
-
# # image,
|
208 |
-
# # (int(det[0]), int(det[1])),
|
209 |
-
# # (int(det[2]), int(det[3])),
|
210 |
-
# # color=(0, 0, 255),
|
211 |
-
# # thickness=2,
|
212 |
-
# # lineType=cv2.LINE_AA
|
213 |
-
# # )
|
214 |
-
# # return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
215 |
-
|
216 |
-
# inputs_image = [
|
217 |
-
# gr.Image(type="filepath", label="Input Image"),
|
218 |
-
# ]
|
219 |
-
# outputs_image = [
|
220 |
-
# gr.Image(type="numpy", label="Output Image"),
|
221 |
-
# ]
|
222 |
-
|
223 |
-
# interface_image = gr.Interface(
|
224 |
-
# fn=show_preds_image,
|
225 |
-
# inputs=inputs_image,
|
226 |
-
# outputs=outputs_image,
|
227 |
-
# title="Smoke Detection on Indian Roads",
|
228 |
-
# examples=path,
|
229 |
-
# cache_examples=False,
|
230 |
-
# )
|
231 |
-
|
232 |
-
# def show_preds_video(video_path):
|
233 |
-
# # Open the input video
|
234 |
-
# cap = cv2.VideoCapture(video_path)
|
235 |
-
|
236 |
-
# # Get video properties
|
237 |
-
# width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
238 |
-
# height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
239 |
-
# fps = int(cap.get(cv2.CAP_PROP_FPS))
|
240 |
-
|
241 |
-
# # Define the codec and create a VideoWriter object
|
242 |
-
# fourcc = cv2.VideoWriter_fourcc(*'mp4v') # 'mp4v' for .mp4 format
|
243 |
-
# out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (width, height))
|
244 |
-
|
245 |
-
# while cap.isOpened():
|
246 |
-
# ret, frame = cap.read()
|
247 |
-
# if not ret:
|
248 |
-
# break
|
249 |
-
|
250 |
-
# frame_copy = frame.copy()
|
251 |
-
# outputs = model.predict(source=frame)
|
252 |
-
# results = outputs[0].cpu().numpy()
|
253 |
-
|
254 |
-
# for i, det in enumerate(results.boxes.xyxy):
|
255 |
-
# class_id = int(results.boxes.cls[i])
|
256 |
-
# label = model.names[class_id]
|
257 |
-
|
258 |
-
# # Get the bounding box coordinates
|
259 |
-
# x1, y1, x2, y2 = int(det[0]), int(det[1]), int(det[2]), int(det[3])
|
260 |
-
|
261 |
-
# # Draw the bounding box with the specified color
|
262 |
-
# color = colors.get(class_id, (0, 0, 255))
|
263 |
-
# cv2.rectangle(frame_copy, (x1, y1), (x2, y2), color, 2, cv2.LINE_AA)
|
264 |
-
|
265 |
-
# # Calculate text size and position
|
266 |
-
# label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.75, 2)
|
267 |
-
# text_x = x1 + (x2 - x1) // 2 - label_size[0] // 2
|
268 |
-
# text_y = y1 + (y2 - y1) // 2 + label_size[1] // 2
|
269 |
-
|
270 |
-
# # Draw the label text
|
271 |
-
# cv2.putText(frame_copy, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, color, 2, cv2.LINE_AA)
|
272 |
-
|
273 |
-
# # Write the frame to the output video
|
274 |
-
# out.write(frame_copy)
|
275 |
-
|
276 |
-
# # Release everything
|
277 |
-
# cap.release()
|
278 |
-
# out.release()
|
279 |
-
|
280 |
-
# return 'output_video.mp4'
|
281 |
-
|
282 |
-
# # Updated Gradio interface
|
283 |
-
# inputs_video = [
|
284 |
-
# gr.Video(format="mp4", label="Input Video"),
|
285 |
-
# ]
|
286 |
-
# outputs_video = [
|
287 |
-
# gr.Video(label="Output Video"),
|
288 |
-
# ]
|
289 |
-
# interface_video = gr.Interface(
|
290 |
-
# fn=show_preds_video,
|
291 |
-
# inputs=inputs_video,
|
292 |
-
# outputs=outputs_video,
|
293 |
-
# title="Smoke Detection on Indian Roads",
|
294 |
-
# examples=video_path,
|
295 |
-
# cache_examples=False,
|
296 |
-
# )
|
297 |
-
# gr.TabbedInterface(
|
298 |
-
# [interface_image, interface_video],
|
299 |
-
# tab_names=['Image inference', 'Video inference']
|
300 |
-
# ).queue().launch()
|
301 |
-
|
302 |
-
|
303 |
-
# # import gradio as gr
|
304 |
-
# # import cv2
|
305 |
-
# # import requests
|
306 |
-
# # import os
|
307 |
-
|
308 |
-
# # from ultralytics import YOLO
|
309 |
-
# # file_urls = [
|
310 |
-
# # 'https://www.dropbox.com/scl/fi/kqd1z6wby1212c6ndodb3/Pol_20_jpg.rf.133c835b66958a7d48c12deeda31a719.jpg?rlkey=uqgvs2cwvahnmju15fv1zgorg&st=snv2yvtk&dl=0',
|
311 |
-
# # 'https://www.dropbox.com/scl/fi/39aakapeh2y5ztk94rsyu/11e-a347-3f2d_jpg.rf.c66e5aeb57ee2ed660fdf0162156127d.jpg?rlkey=xoi3iw45vksgiejycau2ha7fh&st=etiawigv&dl=0',
|
312 |
-
# # 'https://www.dropbox.com/scl/fi/8f08ehy53vsemw164g8n7/Recording2024-06-26184319.mp4?rlkey=pnmov906ttodl0cm92rpvc5ta&st=2twc9pjn&dl=0'
|
313 |
-
# # ]
|
314 |
-
|
315 |
-
|
316 |
-
# # def download_file(url, save_name):
|
317 |
-
# # url = url
|
318 |
-
# # if not os.path.exists(save_name):
|
319 |
-
# # file = requests.get(url)
|
320 |
-
# # open(save_name, 'wb').write(file.content)
|
321 |
-
|
322 |
-
# # for i, url in enumerate(file_urls):
|
323 |
-
# # if 'mp4' in file_urls[i]:
|
324 |
-
# # download_file(
|
325 |
-
# # file_urls[i],
|
326 |
-
# # f"video.mp4"
|
327 |
-
# # )
|
328 |
-
# # else:
|
329 |
-
# # download_file(
|
330 |
-
# # file_urls[i],
|
331 |
-
# # f"image_{i}.jpg"
|
332 |
-
# # )
|
333 |
-
|
334 |
-
# # model = YOLO('modelbest.pt')
|
335 |
-
# # path = [['image_0.jpg'], ['image_1.jpg']]
|
336 |
-
# # video_path = [['video.mp4']]
|
337 |
-
|
338 |
-
# # def show_preds_image(image_path):
|
339 |
-
# # image = cv2.imread(image_path)
|
340 |
-
# # outputs = model.predict(source=image_path)
|
341 |
-
# # results = outputs[0].cpu().numpy()
|
342 |
-
# # for i, det in enumerate(results.boxes.xyxy):
|
343 |
-
# # cv2.rectangle(
|
344 |
-
# # image,
|
345 |
-
# # (int(det[0]), int(det[1])),
|
346 |
-
# # (int(det[2]), int(det[3])),
|
347 |
-
# # color=(0, 0, 255),
|
348 |
-
# # thickness=2,
|
349 |
-
# # lineType=cv2.LINE_AA
|
350 |
-
# # )
|
351 |
-
# # return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
352 |
-
|
353 |
-
# # inputs_image = [
|
354 |
-
# # gr.components.Image(type="filepath", label="Input Image"),
|
355 |
-
# # ]
|
356 |
-
# # outputs_image = [
|
357 |
-
# # gr.components.Image(type="numpy", label="Output Image"),
|
358 |
-
# # ]
|
359 |
-
|
360 |
-
# # interface_image = gr.Interface(
|
361 |
-
# # fn=show_preds_image,
|
362 |
-
# # inputs=inputs_image,
|
363 |
-
# # outputs=outputs_image,
|
364 |
-
# # title="Pothole detector",
|
365 |
-
# # examples=path,
|
366 |
-
# # cache_examples=False,
|
367 |
-
# # )
|
368 |
-
|
369 |
-
|
370 |
-
# # def show_preds_video(video_path):
|
371 |
-
# # cap = cv2.VideoCapture(video_path)
|
372 |
-
# # while(cap.isOpened()):
|
373 |
-
# # ret, frame = cap.read()
|
374 |
-
# # if ret:
|
375 |
-
# # frame_copy = frame.copy()
|
376 |
-
# # outputs = model.predict(source=frame)
|
377 |
-
# # results = outputs[0].cpu().numpy()
|
378 |
-
# # for i, det in enumerate(results.boxes.xyxy):
|
379 |
-
# # cv2.rectangle(
|
380 |
-
# # frame_copy,
|
381 |
-
# # (int(det[0]), int(det[1])),
|
382 |
-
# # (int(det[2]), int(det[3])),
|
383 |
-
# # color=(0, 0, 255),
|
384 |
-
# # thickness=2,
|
385 |
-
# # lineType=cv2.LINE_AA
|
386 |
-
# # )
|
387 |
-
# # yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
388 |
-
|
389 |
-
# # inputs_video = [
|
390 |
-
# # gr.components.Video(type="filepath", label="Input Video"),
|
391 |
-
|
392 |
-
# # ]
|
393 |
-
# # outputs_video = [
|
394 |
-
# # gr.components.Image(type="numpy", label="Output Image"),
|
395 |
-
# # ]
|
396 |
-
# # interface_video = gr.Interface(
|
397 |
-
# # fn=show_preds_video,
|
398 |
-
# # inputs=inputs_video,
|
399 |
-
# # outputs=outputs_video,
|
400 |
-
# # title="Pothole detector",
|
401 |
-
# # examples=video_path,
|
402 |
-
# # cache_examples=False,
|
403 |
-
# # )
|
404 |
-
|
405 |
-
# # gr.TabbedInterface(
|
406 |
-
# # [interface_image, interface_video],
|
407 |
-
# # tab_names=['Image inference', 'Video inference']
|
408 |
-
# # ).queue().launch()
|
|
|
4 |
import os
|
5 |
from ultralytics import YOLO
|
6 |
|
7 |
+
# Downloading the necessary files
|
8 |
file_urls = [
|
9 |
'https://www.dropbox.com/scl/fi/kqd1z6wby1212c6ndodb3/Pol_20_jpg.rf.133c835b66958a7d48c12deeda31a719.jpg?rlkey=uqgvs2cwvahnmju15fv1zgorg&st=snv2yvtk&dl=0',
|
10 |
'https://www.dropbox.com/scl/fi/39aakapeh2y5ztk94rsyu/11e-a347-3f2d_jpg.rf.c66e5aeb57ee2ed660fdf0162156127d.jpg?rlkey=xoi3iw45vksgiejycau2ha7fh&st=etiawigv&dl=0',
|
|
|
22 |
else:
|
23 |
download_file(url, f"image_{i}.jpg")
|
24 |
|
25 |
+
# Define the colors for different classes
|
26 |
colors = {
|
27 |
0: (255, 0, 0), # Red for class 0
|
28 |
1: (0, 128, 0), # Green (dark) for class 1
|
|
|
34 |
7: (0, 225, 0), # Green for class 7
|
35 |
}
|
36 |
|
37 |
+
# Load the YOLO model
|
38 |
model = YOLO('modelbest.pt')
|
|
|
|
|
39 |
|
40 |
def show_preds_image(image_path):
|
41 |
image = cv2.imread(image_path)
|
|
|
70 |
fn=show_preds_image,
|
71 |
inputs=inputs_image,
|
72 |
outputs=outputs_image,
|
73 |
+
title="Smoke Detection on Indian Roads"
|
|
|
|
|
74 |
)
|
75 |
|
76 |
def show_preds_video(video_path):
|
|
|
121 |
fn=show_preds_video,
|
122 |
inputs=inputs_video,
|
123 |
outputs=outputs_video,
|
124 |
+
title="Smoke Detection on Indian Roads"
|
|
|
|
|
125 |
)
|
126 |
|
127 |
gr.TabbedInterface(
|
128 |
[interface_image, interface_video],
|
129 |
tab_names=['Image inference', 'Video inference']
|
130 |
).queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|